BACKGROUND: Annual influenza epidemics significantly burden health care. Anticipating them allows for timely preparation. The Scientific Institute of Public Health in Belgium (WIV-ISP) monitors the incidence of influenza and influenza-like illnesses (ILIs) and reports on a weekly basis. General practitioners working in out-of-hour cooperatives (OOH GPCs) register diagnoses of ILIs in an instantly accessible electronic health record (EHR) system. This article has two objectives: to explore the possibility of modelling seasonal influenza epidemics using EHR ILI data from the OOH GPC Deurne-Borgerhout, Belgium, and to attempt to develop a model accurately predicting new epidemics to complement the national influenza surveillance by WIV-ISP.
METHOD: Validity of the OOH GPC data was assessed by comparing OOH GPC ILI data with WIV-ISP ILI data for the period 2003-2012 and using Pearson's correlation. The best fitting prediction model based on OOH GPC data was developed on 2003-2012 data and validated on 2012-2015 data. A comparison of this model with other well-established surveillance methods was performed. A 1-week and one-season ahead prediction was formulated.
RESULTS: In the OOH GPC, 72,792 contacts were recorded from 2003 to 2012 and 31,844 from 2012 to 2015. The mean ILI diagnosis/week was 4.77 (IQR 3.00) and 3.44 (IQR 3.00) for the two periods respectively. Correlation between OOHs and WIV-ISP ILI incidence is high ranging from 0.83 up to 0.97. Adding a secular trend (5 year cycle) and using a first-order autoregressive modelling for the epidemic component together with the use of Poisson likelihood produced the best prediction results. The selected model had the best 1-week ahead prediction performance compared to existing surveillance methods. The prediction of the starting week was less accurate (±3 weeks) than the predicted duration of the next season.
CONCLUSION: OOH GPC data can be used to predict influenza epidemics both accurately and fast 1-week and one-season ahead. It can also be used to complement the national influenza surveillance to anticipate optimal preparation.