sciensano.be
Gepubliceerd op sciensano.be (https://sciensano.be)

Home > Biblio > Pulmonary Aspergillosis in Humboldt Penguins—Susceptibility Patterns andMolecular Epidemiology of Clinical and Environmental Aspergillus fumigatus Isolates from a Belgian Zoo

Pulmonary Aspergillosis in Humboldt Penguins—Susceptibility Patterns andMolecular Epidemiology of Clinical and Environmental Aspergillus fumigatus Isolates from a Belgian Zoo

Ziekten en gezondheid in kaart brengen  
[1]
Downloaden 2.33 MB [1]

Public Access

Published

Peer reviewed scientific article

Engels

DOI : https://doi.org/10.3390/antibiotics12030584 [2]

Auteurs

Hanne Debergh [3]; Pierre Becker [4]; Vercammen,F. [5]; K. Lagrou [6]; Roel Haesendonck [7]; Saegerman,C. [8]; Ann Packeu [9]

Trefwoorden

  1. antifungal susceptibility testing [10]
  2. Aspergillus fumigatus [11]
  3. avian aspergillosis [12]
  4. azole resistance [13]
  5. cyp51A [14]
  6. genotyping [15]
  7. MIC [16]
  8. microsatellite typing [17]
  9. One Health [18]
  10. Spheniscus humboldti [19]
Article written during project(s) : 

Samenvatting:

Aspergillus fumigatus is the main causative agent of avian aspergillosis and results in significant health problems in birds, especially those living in captivity. The fungal contamination by A. fumigatus in the environment of Humboldt penguins (Spheniscus humboldti), located in a Belgian zoo, was assessed through the analysis of air, water, sand and nest samples during four non-consecutive days in 2021–2022. From these samples, potential azole-resistant A. fumigatus (ARAF) isolates were detected using a selective culture medium. A total of 28 veterinary isolates ob…
Lees meer

Samenvatting

Aspergillus fumigatus is the main causative agent of avian aspergillosis and results in significant health problems in birds, especially those living in captivity. The fungal contamination by A. fumigatus in the environment of Humboldt penguins (Spheniscus humboldti), located in a Belgian zoo, was assessed through the analysis of air, water, sand and nest samples during four non-consecutive days in 2021–2022. From these samples, potential azole-resistant A. fumigatus (ARAF) isolates were detected using a selective culture medium. A total of 28 veterinary isolates obtained after necropsy of Humboldt penguins and other avian species from the zoo were also included. All veterinary and suspected ARAF isolates from the environment were characterized for their azole-resistance profile by broth microdilution. Isolates displaying phenotypic resistance against at least one medical azole were systematically screened for mutations in the cyp51A gene. A total of 14 (13.6%) ARAF isolates were identified from the environment (n = 8) and from Humboldt penguins (n = 6). The TR34/L98H mutation was observed in all resistant environmental strains, and in two resistant veterinary strains. To the best of our knowledge, this is the first description of this mutation in A. fumigatus isolates from Humboldt penguins. During the period 2017–2022, pulmonary aspergillosis was confirmed in 51 necropsied penguins, which reflects a death rate due to aspergillosis of 68.0%, mostly affecting adults. Microsatellite polymorphism analysis revealed a high level of diversity among environmental and veterinary A. fumigatus isolates. However, a cluster was observed between one veterinary isolate and six environmental strains, all resistant to medical azoles. In conclusion, the environment of the Humboldt penguins is a potential contamination source of ARAF, making their management even more complex.

Associated health topics:

Ziekten en gezondheid in kaart brengen [20]

Source URL:https://sciensano.be/nl/biblio/pulmonary-aspergillosis-humboldt-penguins-susceptibility-patterns-andmolecular-epidemiology-clinical-0

Links
[1] https://sciensano.be/sites/default/files/debergh_h._et_al_2023_penguins_1.pdf [2] https://doi.org/10.3390/antibiotics12030584 [3] https://sciensano.be/nl/people/hanne-debergh/biblio [4] https://sciensano.be/nl/people/pierre-becker/biblio [5] https://sciensano.be/nl/biblio?f%5Bauthor%5D=1656&f%5Bsearch%5D=Vercammen%2CF. [6] https://sciensano.be/nl/biblio?f%5Bauthor%5D=20337&f%5Bsearch%5D=K.%20Lagrou [7] https://sciensano.be/nl/biblio?f%5Bauthor%5D=88083&f%5Bsearch%5D=Roel%20Haesendonck [8] https://sciensano.be/nl/biblio?f%5Bauthor%5D=1206&f%5Bsearch%5D=Saegerman%2CC. [9] https://sciensano.be/nl/people/ann-packeu/biblio [10] https://sciensano.be/nl/biblio?f%5Bkeyword%5D=38155&f%5Bsearch%5D=antifungal%20susceptibility%20testing [11] https://sciensano.be/nl/biblio?f%5Bkeyword%5D=31308&f%5Bsearch%5D=Aspergillus%20fumigatus [12] https://sciensano.be/nl/biblio?f%5Bkeyword%5D=38185&f%5Bsearch%5D=avian%20aspergillosis [13] https://sciensano.be/nl/biblio?f%5Bkeyword%5D=38158&f%5Bsearch%5D=azole%20resistance [14] https://sciensano.be/nl/biblio?f%5Bkeyword%5D=38188&f%5Bsearch%5D=cyp51A [15] https://sciensano.be/nl/biblio?f%5Bkeyword%5D=38190&f%5Bsearch%5D=genotyping [16] https://sciensano.be/nl/biblio?f%5Bkeyword%5D=38187&f%5Bsearch%5D=MIC [17] https://sciensano.be/nl/biblio?f%5Bkeyword%5D=38189&f%5Bsearch%5D=microsatellite%20typing [18] https://sciensano.be/nl/biblio?f%5Bkeyword%5D=34569&f%5Bsearch%5D=One%20Health [19] https://sciensano.be/nl/biblio?f%5Bkeyword%5D=38186&f%5Bsearch%5D=Spheniscus%20humboldti [20] https://sciensano.be/nl/gezondheidsonderwerpen/ziekten-en-gezondheid-kaart-brengen