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Background—Molecular diagnostics are considered the most promising route to achieving 

rapid, universal drug susceptibility testing for Mycobacterium tuberculosiscomplex (MTBC). We 

aimed to generate a WHO endorsed catalogue of mutations to serve as a global standard for 

interpreting molecular information for drug resistance prediction.

Methods—A candidate gene approach was used to identify mutations as associated with 

resistance, or consistent with susceptibility, for 13 WHO endorsed anti-tuberculosis drugs. 38,215 

MTBC isolates with paired whole-genome sequencing and phenotypic drug susceptibility testing 

data were amassed from 45 countries. For each mutation, a contingency table of binary phenotypes 

and presence or absence of the mutation computed positive predictive value, and Fisher’s exact 

tests generated odds ratios and Benjamini-Hochberg corrected p-values. Mutations were graded 

as Associated with Resistance if present in at least 5 isolates, if the odds ratio was >1 with a 

statistically significant corrected p-value, and if the lower bound of the 95% confidence interval 

on the positive predictive value for phenotypic resistance was >25%. A series of expert rules were 

applied for final confidence grading of each mutation.

Findings—15,667 associations were computed for 13,211 unique mutations linked to one 

or more drugs. 1,149/15,667 (7·3%) mutations were classified as associated with phenotypic 

resistance and 107/15,667 (0·7%) were deemed consistent with susceptibility. For rifampicin, 

isoniazid, ethambutol, fluoroquinolones, and streptomycin, the mutations’ pooled sensitivity 

was >80%. Specificity was over 95% for all drugs except ethionamide (91·4%), moxifloxacin 

(91·6%) and ethambutol (93·3%). Only two resistance mutations were classified for bedaquiline, 

delamanid, clofazimine, and linezolid as prevalence of phenotypic resistance was low for these 

drugs.

Interpretation—This first WHO endorsed catalogue of molecular targets for MTBC drug 

susceptibility testing provides a global standard for resistance interpretation. Its existence should 

encourage the implementation of molecular diagnostics by National Tuberculosis Programmes.

Funding—UNITAID, Wellcome, MRC, BMGF.

Introduction

Due to disruptions related to the COVID-19 pandemic, it is estimated that in 2020 1.4 

million fewer people received treatment for tuberculosis compared to 2019. The estimated 

additional 500,000 deaths over the previous year’s total of 1.4 million will set the world 

back to levels of mortality levels not seen since 2010. 1,2 The diagnosis and appropriate 

treatment of patients with rifampicin resistance was already challenging pre-pandemic, with 

fewer than half of an estimated 500,000 patients benefitting. 2 The availability of several 

new treatment options and strategies for the first time in decades is an advance, but getting 

the right drugs to the right patients in time to positively impact outcomes is essential, and 

requires access to rapid and accurate diagnostics that meet the emerging needs. 3,4 

The World Health Organization (WHO) set an important but challenging target on universal 

drug susceptibility testing (DST), which includes testing for the new and repurposed drugs 

in the WHO revised definition of extensively drug-resistant tuberculosis. 5 Phenotypic DST 

for Mycobacterium tuberculosis complex (MTBC), although still the reference standard for 

most drugs, can take over a month to complete and requires expensive, complex laboratory 
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capacity. For many countries these challenges remain prohibitive. Genotypic approaches to 

susceptibility testing can be rapid, accurate, automated and cost-effective. 6 However, no 

WHO-endorsed catalogue of mutations for the interpretation of genotypic DST results has 

hitherto been available.

The combination of rapid and accurate diagnostic tools and supportive WHO policies can 

have significant global impact. 2 The WHO previously published a guide to MTBC next-

generation sequencing data interpretation, adopting the findings from a previous systematic 

review of the literature. 7,8 However, that review did not cover new or repurposed drugs and 

relied on Sanger sequencing results, which meant that the genomic regions interrogated were 

inconsistent, increasing the chance of false associations. Gaps in knowledge thus remain. We 

describe the methods and results of a systematic analysis of a large, globally diverse set of 

isolates using whole-genome sequencing (WGS) data and accompanying DST, intended to 

generate more knowledge and create the first WHO endorsed catalogue of mutations for 13 

anti-tuberculosis drugs. 9 

Methods

Data sources

Existing MTBC WGS data were collected worldwide from academic groups and consortia, 

reference laboratories, public health organizations and the published literature, along with 

associated phenotypic DST data (Supplementary Table S1; Appendix). Data were accepted 

whether locally representative or enriched for resistance. Genomically clustered samples 

were not excluded, provided these had been assayed independently.

Phenotypic data

Both categorical (resistant/susceptible) and quantitative (minimum inhibitory concentrations 

(MICs)) phenotypic data were collected. Different DST methods and resistance-defining 

critical concentrations were accepted. To ensure comparability and optimise quality, 

phenotypes were categorised as follows: methods and critical concentrations currently 

endorsed by WHO (category 1); critical concentrations previously endorsed by WHO for 

those methods (category 2); methods or critical concentrations not currently endorsed 

by WHO (category 3). Results in downstream analyses were weighted accordingly 

(Supplementary Table, S2).

Category 1 methods included Löwenstein-Jensen, Middlebrook 7H10, Middlebrook 7H11, 

and BACTEC Mycobacterial Growth Indicator Tube (MGIT) by Becton Dickinson, using 

critical concentrations from current WHO DST guidelines. 10-14 Phenotypes derived from 

these media were classified as category 2 if critical concentrations used were outdated, or 

reported to have relied on WHO guidance without providing the concentration tested. 15-17 

If critical concentrations were unknown, phenotypes were classified as category 3, along 

with MIC data obtained from Thermo Fisher Scientific broth microdilution plates developed 

for, and validated by, CRyPTIC, which were converted into categorical results using plate-

specific epidemiological cut-offs. 18 Phenotypic results that did not fit categories 1-3 were 

excluded.
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Where data from more than one phenotypic method were available for an isolate, 

phenotypes from category 1 were selected over category 2, and these in turn over category 

3. Within each category, solid media were ranked above liquid media, which in turn had 

its own hierarchy, ranking MGIT over microscopic observation drug susceptibility (MODS) 

over CRyPTIC plates on the basis of historical WHO endorsements.

Genotypic data

Only WGS data derived from Illumina sequencers were considered. Raw WGS data were 

processed by Clockwork, a variant calling pipeline developed by CRyPTIC. 19 As a sanity 

check and means of measuring quality of the variant calls thereby obtained, 17 well 

characterised MTBC isolates with high quality polished single-contig hybrid PacBio and 

Illumina assemblies were used as controls. 19 These were added to the cohort at the start, and 

then their variant calls were compared with the truth assemblies following the methodology 

previously described. 20 Across these 17 samples, mean precision and recall was 99.8% 

and 94.7% respectively (after filters, and excluding the untrustworthy masked part of the 

genome).

Identification of variants

For each drug, a set of candidate genes and corresponding promoter sequences with a high 

prior probability of being associated with resistance were identified by an expert panel based 

on the published literature (Supplementary Table S3). The number of sequence positions not 

passing a pipeline filter was quantified for each gene for every isolate as a measure of likely 

local sequencing noise. Assuming a Poisson distribution, where the probability of seeing a 

given number of calls failing a filter in a given gene was <1% (i.e. a comparatively large 

number), the phenotype associated with that gene was excluded from further consideration. 

Isolates with katG S315T or rpoB S450L variants and susceptible phenotypes to isoniazid 

(n=128) or rifampicin (n=118), respectively, were also excluded on the assumption that these 

discrepancies were likely due to sample mislabelling. 21 

An algorithm was then used to categorise the candidate sequences using methods similar 

to those previously described (Appendix). 22 The approach reflects the definite defectives 

method from the field of group testing, 23 identifying bacterial isolates containing just a 

single genetic mutation among candidate genes, and associating this with the phenotype.

To maximise the number of isolates in which a mutation can be isolated as the only mutation 

among candidate genes, a series of pre-processing steps identified mutations consistent 

with phenotypic susceptibility, and masked these prior to analysis. This was based on the 

upper bound of the 95% confidence interval on the positive predictive value (PPV) for 

phenotypic resistance being <10% for any given mutation. Synonymous mutations, loci 

at otherwise invariant sites for which no base could be called, and variants previously 

reported as phenotypically neutral were also masked. 24 Genes were also divided into two 

tiers for hierarchical analysis, with tier 1 sequences representing those considered by an 

expert panel to have a higher prior probability of association with resistance, analysed first 

(Supplementary Table S4). 9 For isolates with no tier 1 genomic explanation for resistance, 

tier 2 sequences were analysed.
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The algorithmic approach characterised mutations in two passes, as follows: Resistant (‘R’) 

if a mutation was identified as the only mutation (a ‘solo’) across candidate genes in 

at least one drug resistant isolate; Susceptible (‘S’) if the variant was only ever seen in 

susceptible isolates, or only ever in susceptible isolates when solo; or unknown (‘U’) when 

the variant was never seen solo and not exclusively found in susceptible isolates. Variants 

characterised as ‘S’ were then masked and the algorithm run a second time (pass 2), 

identifying additional mutations now exposed as solo and characterising these. Two-by-two 

tables were generated from the number of susceptible and resistant phenotypes with and 

without each characterised variant as solo, and odds ratios (OR) and corresponding p-values 

generated using Fisher’s exact test. Benjamini-Hochberg corrections were used to assess 

statistical significance using a false discovery rate (FDR) of 5%. PPV and binomial exact 

95% confidence intervals were computed from the contingency tables.

The algorithm was run once for category 1 phenotypes, again for category 1 and 2 

phenotypes combined, and a third time for all phenotypes together. To avoid perfect 

prediction for the katG S315T or rpoB S450L variants (for which any susceptible isolates 

were excluded assuming sample mislabelling, as described above), phenotypes from 

excluded isolates were added back in only to compute the OR and PPV for these variants for 

each iteration.

Confidence grading

The ORs, PPVs and associated FDR corrected p-values and confidence intervals formed the 

basis for the confidence grading approach in which variants were assigned to one of five 

groups: 1) associated with resistance; 2) associated with resistance – interim; 3) uncertain 

significance; 4) not associated with resistance – interim; 5) not associated with resistance 

(i.e. ‘consistent with susceptibility’). 25 Mutations identified as solo with a category 1 or 

2 phenotype (i.e. a WHO endorsed method) on at least five occasions; that had a 95% CI 

lower bound of ≥0.25 for the positive predictive value; and with an OR>1 and a significant 

FDR-corrected p-value, were classified as ‘associated with resistance’. A mutation was 

graded as ‘associated with resistance - interim’ if fewer than 5 of the solos were associated 

with a category 1 or 2 phenotype, or if the mutation was only identified as solo on the 

second pass of the algorithm.

Mutations were graded as ‘not associated with resistance’ if solos met the pre-processing 

criteria described above (95% confidence interval upper bound on the positive predictive 

value for phenotypic resistance <10%). All other mutations were graded as having 

‘uncertain significance’.

Unlike many drugs which have hotspots in which resistance mutations cluster in a relevant 

gene, resistance to pyrazinamide can be conferred by a large number of individually 

infrequent mutations dispersed across pncA. 25 Confidence grading criteria established for 

other drugs excluded most of these mutations and were therefore relaxed. Mutations present 

as solo in pncA in at least two resistant isolates and with ≥50% PPV were classified as 

‘associated with resistance – interim’, whereas those with a PPV <40% (and upper bound 

95% CI <75%) were classified as ‘not associated with resistance – interim’.
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Finally, a set of expert rules were applied to mutations of ‘uncertain significance' whereby 

any nonsynonymous mutation in the rifampicin resistance determining region of rpoB, and 

any premature stop codon or insertion/deletion in ethA, gid, katG or pncA was interpreted 

as ‘associated with resistance – interim’. 8,25 Mutations not already graded, but for which 

there was previous guidance from WHO, were graded according to that external evidence, 

with an ‘interim’ caveat unless these were so-called borderline mutations in the rifampicin 

resistance determining region, or unless there was more recent evidence in the literature to 

suggest previous WHO guidance should be revised (see Appendix and detailed methods in 

WHO document). 9 

Role of the funding source

The funders of the study had no role in the study design, data collection, data analysis, data 

interpretation, or writing of the report. The corresponding author had full access to all the 

data in the study and had final responsibility for the decision to submit for publication.

Findings

We analysed 41,137 MTBC isolates with phenotypic and WGS data from 41 countries 

across six continents. Thirty countries contributed data on more than 100 isolates and ten 

countries contributed more than 1,000 isolates. 38,215 isolates (mean depth of 120x) passed 

quality control steps and were included in the final analysis.

Not all isolates had phenotypic DST results for all drugs. Data on first-line drugs, 

isoniazid, rifampicin, ethambutol and pyrazinamide were most common. Phenotypic data 

on new and repurposed drugs, bedaquiline, delamanid, clofazimine and linezolid, were least 

common and almost exclusively derived from CRyPTIC plates (Table 1). 18 The prevalence 

of resistance to first-line drugs ranged from 14% (pyrazinamide) to 35% (isoniazid). 

The prevalence of resistance to new (bedaquiline, delamanid) and repurposed (linezolid, 

clofazimine) drugs was lower than for other drugs (≤1·2%).

15,667 associations were computed for 13,211 unique mutations relevant to one or more 

of 13 drugs. 1,149/15,667 (7·3%) mutations were graded as group 1 or 2, and 107/15,667 

(0·7%) were graded as group 4 or 5. The majority were graded as of ‘uncertain significance’ 

(group 3) (Figure 1; Supplementary Table S4). All group 1 and 2 mutations were derived 

from tier 1 sequences (Supplementary Table S4), and for most drugs from only one or two 

genes (Supplementary Table S5). Except for inhA promoter mutations, all upstream group 

1 and 2 mutations were within 12bp of a start codon. Although there were many group 

3 mutations, individually these were seen far less frequently than the comparatively small 

number of group 1 or 2, or group 4 or 5 mutations (Figure 2). For pyrazinamide, only 7% 

of isolates contained a mutation of uncertain significance, climbing to 42% for bedaquiline 

(Supplementary Table S6).

As no independent dataset was available to test the catalogue, sensitivity and specificity 

were assessed by predicting phenotypic resistance for the same data from which the 

catalogue was derived. For rifampicin, isoniazid, ethambutol, fluoroquinolones, and 

streptomycin, the mutations’ pooled sensitivity was>80%. Specificity was over 95% for 
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all drugs except ethionamide (91·4%), moxifloxacin (91·6%) and ethambutol (93·3%) 

(Figure 3). In most cases the contribution of expert rules to sensitivity was small. 

For isoniazid, 10,978/12,199 (90%) resistant isolates contained one of five data-derived 

resistance mutations, with an additional 148 (1·2%) isolates subject to an expert rule. 

For rifampicin 9,047/9,868 (91·7%) resistant isolates contained one of the 23 data-derived 

resistance mutations, with 207 (2·1%) additional isolates subject to expert rules (Figure 3; 

Supplementary Table S4). For drugs where resistance can be caused by loss of function 

mutations in non-essential genes, the expert rules played a greater role. For pyrazinamide, 

284/2,329 (12·2%) resistant isolates were subject to an expert rule, and for ethionamide 

530/2,965 (17·9%) (Supplementary Table S7).

Only one mutation was classified as a group 1 resistance associated mutation for linezolid 

and one group 2 mutation for delamanid. No resistance mutations were identified from the 

data for bedaquiline or clofazimine. Figure 4 shows how the correspondingly low sensitivity 

relates to the number of isolates analysed for each drug and to the prevalence of phenotypic 

resistance among those isolates. Not only were fewer isolates analysed for the novel use 

drugs, the prevalence of resistance was markedly lower, between 0·9%-1·2%, and ≥2% even 

among isolates resistant to rifampicin and isoniazid. For legacy-use drugs it was between 

7·6%-35·4%.

All genomic and associated phenotypic data are available (see Supplementary Table S1).

Discussion

This catalogue represents the first WHO endorsed list of genomic mutations associated with 

drug resistance, or consistent with susceptibility, in MTBC. 9 It is derived from the largest, 

globally sourced dataset of MTBC genome sequences and associated phenotypes published 

to date. This catalogue provides a common starting point and serves as a public resource 

for a wide array of users from tuberculosis reference laboratories, to molecular diagnostics 

developers, to surveillance programmes.

The approach adopted to classify mutations combined three previously published schemes 

that were refined during several rounds of consultation with an international panel of 

clinicians and researchers. 8,22,25 The analysis was designed to be deliberately stringent 

to minimise the chances of having to reverse the grading of any variants in the future. There 

will therefore be mutations described in the literature, including in known drug resistance 

genes for new and repurposed drugs, that are not in the catalogue (e.g. rrl for linezolid). 3,26 

Indeed, the reported performance of existing catalogues is often higher than the sensitivity 

and specificity reported here. 21 The difference is that the WHO catalogue presents robust 

evidence for each mutation, whereas the sensitivity of other catalogues has benefited 

from including lower confidence mutations, such as mutations that may only ever have 

been seen once, or compensatory mutations. 21 Although the latter can accurately predict 

resistance (e.g. ahpC promotor mutations interrogated by the WHO-endorsed Cepheid Xpert 

MTB/XDR assay), 9 this analysis was designed not to associate these with resistance. 

Nevertheless, as a group lower-confidence mutations are likely to be enriched for resistance, 

thereby typically improving the sensitivity of a catalogue more than they might negatively 
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impact its specificity. The WHO catalogue may therefore not be the best performing 

catalogue, but instead provides a common platform from which to build catalogues and 

diagnostic assay.

This work was not designed as a systematic review of the literature, although decisions by 

WHO, based on the literature, were incorporated unless more recent literature contradicted 

these. 9 Following these precedents, a series of expert rules intended to cover all possible 

mutations that share functional features, such as premature stop codons, insertions or 

deletions resulting in the loss of function of non-essential genes such as katG or pncA 
were used. 8 Although the rules are evidence-based, it is possible that exceptions exist. For 

instance, not all nonsense mutations may result in a loss of function. Expert rules could 

also have been applied to other non-essential genes relevant to other drugs, but we chose a 

stringent approach. Rules may need updating as new data accumulate.

While large numbers of isolates can help overcome the variability introduced by random 

error in measurements, big data remain susceptible to systematic error such as from changes 

in recommended critical concentrations over time, as happened for the fluroquinolones in 

2018. 12 The phenotypic data here were largely derived from WHO endorsed methods, albeit 

from a variety of media with varying critical concentrations. The broth microdilution plates 

by the CRyPTIC consortium are not WHO-endorsed, but contributed phenotypes for over 

20% of these isolates, including the vast majority of data for the new and repurposed 

drugs. 18 The hierarchical prioritization of phenotypes was an attempt to manage the 

diversity in phenotypic methods.

Two tiers of candidate genes were analysed, with mainly canonical targets in tier 1 and 

more recently identified genes in tier 2. 27,28 No mutations outside of tier 1 genes and their 

promoters were classified as associated with resistance in this analysis. It could be that tier 2 

variants were either too rare, or that the mutations in these genes result in smaller increases 

in the MIC, producing a more variable binary phenotype that failed to meet the established 

thresholds.

The specificity of graded mutations was low for some drugs (Figure 3), which is likely 

due to a combination of four factors. 29 First, inappropriately high critical concentrations 

between 2014-18 played a major role for moxifloxacin, despite our hierarchical approach 

prioritising phenotypic DST results. 10 Second, some resistance mutations only confer 

modest MIC increases, which means that their MIC distributions overlap with that of 

genuinely susceptible isolates. For these mechanisms, phenotypic DST, even using the 

correct critical concentration, is not a reliable confirmatory method, as recognised by 

WHO’s endorsement of a composite reference standard for rifampicin. 11 Third, epistasis 

could have played a role for amikacin and potentially bedaquiline and clofazimine. 30 

Finally, the expert rules may have overcalled resistance in some cases, as outlined above. It 

should also be noted that both sensitivity and specificity might be overestimated since these 

were assessed on the same data from which mutations were graded.

Despite these limitations, progress is to be expected as more resistant isolates are collected. 

This is especially important for new and repurposed drugs. Diminishing returns are however 
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to be expected from analysing many more isolates resistant to legacy-use drugs, especially 

where the very major error rate (the gap between observed sensitivity and 100%) starts to 

overlap with the expected rate of phenotypic or sample labelling error. 21 

There are national tuberculosis programmes that already use WGS in place of phenotypic 

testing to direct the use of first-line drugs, 21 but further work is required to expand the 

catalogue for all drugs, and meet the desired target product profiles for molecular DST. 7,29 

This should focus on collections with more phenotypic resistance to new and repurposed 

drugs, and could involve in vivo and in vitro selection experiments. 3 Future analyses should 

also focus on the association between mutations, and combinations of mutations, with 

MICs. 28,29 Such data would help facilitate the tailoring of individual drug doses based on 

molecular diagnostics. The WHO plans to regularly update the catalogue and will endeavour 

to incorporate these advances and address existing gaps to strengthen the public health 

response. The effort will depend on future contributions from researchers, funding agencies 

and data custodians to this global effort.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Research in Context

Evidence before this study

Much work has been undertaken to describe molecular causes of resistance to anti-

tuberculosis drugs over the past three decades. Available tools have changed over 

the years and whole-genome sequencing (WGS) technology has emerged and taken 

over from PCR based techniques as the dominant approach to large scale genomic 

analyses. There have been various independent efforts to consolidate research findings 

into lists of mutations associated with drug resistance. The TBDreamDB was an early 

attempt and the systematic review of the literature by the ReSeqTB consortium was 

a more recent effort. The findings of the latter work were reflected in a WHO guide 

to the interpretation of M. tuberculosis complex (MTBC) WGS data. However, there 

was no globally endorsed standard of MTBC mutations and interpretation for national 

tuberculosis programmes or industry to refer to in the design of their services or products.

Added value of this study

The diverse nature of the data accumulated over the past decades using different 

technologies and different platforms has made comparability challenging. This study 

leveraged established knowledge to define a set of candidate genes for each drug and 

sought to assemble as large a dataset as possible, from as many countries as possible, to 

perform a de novo analysis of all the available WGS data and associated phenotypes. 

The result is the first WHO endorsed catalogue of mutations associated with drug 

resistance and consistent with drug susceptibility (published by WHO in 2021) that 

constitutes an international reference point for national tuberculosis programmes and 

assay manufacturers. This article reflects the data that generated the catalogue, providing 

a summary of the findings and an overview of what has been achieved so far, and where 

future efforts should be invested to improve molecular diagnostics, and thereby also 

patients care.

Implication of all the available evidence

The WHO catalogue is a deliberately conservative effort and is not exhaustive. The 

weight of evidence supporting each mutation in the catalogue should however provide 

confidence to the tuberculosis community. Great accuracy has been achieved when 

predicting drug resistance in the past, but not every mutation in previous catalogues 

has necessarily been as well supported as is the case here. Having a WHO endorsed 

mutation list should support the field of molecular drug susceptibility testing in MTBC 

by providing all countries a template for the interpretation of their data, and thereby 

encouraging adoption of these technologies. WHO plans to update the catalogue on a 

regular basis, and as more data are generated as a consequence, there are expected to be 

more data to feed into future analyses, hopefully initiating a virtuous circle.
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Figure 1. 
The number of Tier 1 mutations in each group for each drug (no Tier 2 mutations were 

graded as group 1 or 2 so these are not shown for any groups). To reflect the minimum 

number of isolates a mutation must have been seen in for it to be graded as group 1 or 2, 

the mutations counted here are those that were seen in 5 or more isolates. The exceptions 

are mutations relevant to pyrazinamide (counted if seen in 2 or more isolates) and mutations 

subject to an expert rule (counted if seen in any number of isolates). The actual number of 

Tier 1 group 3 mutations (‘Uncertain significance’), regardless of the frequency with which 

these were seen, is written within each grey bar. Group 4 mutations graded as such by an 

expert rule are not shown separately here; see Supplementary Table S4 for details on those. 

*All expert rule mutations were group 2, with the exception of rpoB borderline mutations.
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Figure 2. 
Number of isolates per mutation, by group and drug. Box and whisker plots exclude 

outside values. Mutations graded by expert rules are not shown as the number of isolates 

such mutations are seen in is not relevant to their classification. (Group 1 = Associated 

with Resistance; Group 2 = Associated with Resistance – interim; Group 3 = Uncertain 

significance; Group 4 = Not associated with Resistance – interim; Group 5 = Not Associated 

with Resistance
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Figure 3. 
Sensitivity and specificity are shown for all drugs. Sensitivity is represented by bars going 

upwards from zero, and specificity by bars going downwards from 100. As in figure 1, 

red and orange represent group 1 (Associated with Resistance) and group 2 (Associated 

with Resistance – Interim) mutations respectively. Mutations subject to expert rules are 

separated from their group and shown independently in light blue. The colour scheme shows 

the incremental sensitivity gained, and corresponding specificity lost, by expanding the 

catalogue to include first group 1 and then group 2 mutations, in each case without the 

use of expert rules, and then adding in the expert rules. With the exception of borderline 

rpoB mutations, all mutation subject to an expert rule were graded as group 2. Confidence 

intervals are for the total effect of all mutations shown.
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Figure 4. 
Total number of isolates for each drug plotted against sensitivity. Each drug is represented 

by a coloured circle that is weighted by the prevalence of phenotypic resistance to that drug 

in this dataset. The centre of each circle shows the intersection between values on the X 

and Y axes. Group 1 = Associated with Resistance; Group 2 = Associated with Resistance – 

interim

Walker et al. Page 28

Lancet Microbe. Author manuscript; available in PMC 2022 April 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Walker et al. Page 29

Table 1
Summary of phenotypic DST data reported by drug; number and percentage of the 
isolates reported with resistant (R) phenotypes.

Drug Level of Support for CC a Total # Isolates Total # Resistant Percentage R (95% CI)

Rifampicin

WHO CURRENT 4,107 1,387 33.8% (32.3-35.2%)

WHO CURRENT+PAST 27,063 6,736 24.9% (24.4-25.4%)

ALL 34,375 9,868 28.7% (28.2-29.2%)

Isoniazid

WHO CURRENT 14,252 3,657 25.7% (24.9-26.4%)

WHO CURRENT+PAST 26,727 8,440 31.6% (31.0-32.1%)

ALL 34,437 12,199 35.4% (34.9-35.9%)

Ethambutol

WHO CURRENT 11,028 1,307 11.9% (11.3-12.5%)

WHO CURRENT+PAST 23,706 3,615 15.2% (14.8-15.7%)

ALL 30,708 4,900 16.0% (15.5-16.4%)

Pyrazinamide

WHO CURRENT 8,416 851 10.1% (9.5-10.8%)

WHO CURRENT+PAST 15,903 2,329 14.6% (14.1-15.2%)

ALL b 15,902 2,329 14.6% (14.1-15.2%)

Levofloxacin

WHO CURRENT 2,407 194 8.1% (7.0-9.2%)

WHO CURRENT+PAST 10,305 2,019 19.6% (18.8-20.4%)

ALL 18,277 3,108 17.0% (16.5-17.6%)

Moxifloxacin

WHO CURRENT 164 12 7.3% (3.8-12.4%)

WHO CURRENT+PAST 6,904 1,094 15.8% (15.0-16.7%)

ALL 13,351 1,869 14.0% (13.4-14.6%)

Bedaquiline

WHO CURRENT 0 0 NA

WHO CURRENT+PAST 88 3 3.4% (0.7-9.6%)

ALL 8,321 73 0.9% (0.7-1.1%)

Linezolid

WHO CURRENT 72 0 0.0% (0.0-5.0%)

WHO CURRENT+PAST 1,131 9 0.8% (0.4-1.5%)

ALL 11,018 123 1.1% (0.9-1.3%)

Clofazimine

WHO CURRENT 0 0 NA

WHO CURRENT+PAST 3,635 23 0.6% (0.4-0.9%)

ALL 10,179 125 1.2% (1.0-1.5%)

Delamanid

WHO CURRENT 0 0 NA

WHO CURRENT+PAST 89 2 2.2% (0.3-7.9%)

ALL 7,778 82 1.1% (0.8-1.3%)

Amikacin

WHO CURRENT 1,015 60 5.9% (4.5-7.5%)

WHO CURRENT+PAST 8,040 664 8.3% (7.7-8.9%)

ALL 16,978 1,288 7.6% (7.2-8.0%)

Streptomycin
WHO CURRENT 1,577 144 9.1% (7.8-10.7%)

WHO CURRENT+PAST 9,043 2,562 28.3% (27.4-29.3%)
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Drug Level of Support for CC a Total # Isolates Total # Resistant Percentage R (95% CI)

ALL 13,984 4,635 33.1% (32.4-33.9%)

Ethionamide

WHO CURRENT 45 17 37.8% (23.8-53.5%)

WHO CURRENT+PAST 2,184 884 40.5% (38.4-42.6%)

ALL 13,918 2,965 21.3% (20.6-22.0%)

a
WHO CURRENT = methods and critical concentrations currently endorsed by WHO (category 1); WHO CURRENT + PAST = category 1 

+ critical concentrations previously endorsed by WHO for those methods (category 2); ALL = category 1 + category 2 + methods or critical 
concentrations not currently endorsed by WHO (category 3).

b
The 'ALL' dataset has one phenotype fewer than the WHO current and past dataset. This is because a whole strain was removed at the stage 

when category 3 phenotypes were added. One strain had a category 3 isoniazid phenotye, with a susceptible isoniazid phenotype and a katG S315T 
mutation, but a phenotypes from a higher category for pyrazinamide. The pyrazinamide phenotype was therefore included as part of the WHO 
current and past dataset. When the isoniazid phenotype was added, and the whole strain was removed, including the pyrazinamide phenotype.
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