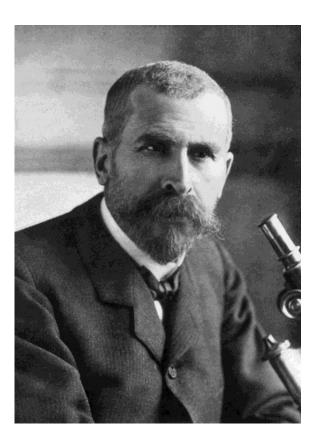


Past, present & future of mycoplasmas in chickens & turkeys

A. Feberwee


DVM, PhD, EBVS© European Specialist in Poultry Veterinary Science Specialist Poultry Health GD Animal Health, Deventer, the Netherlands

Introduction

The microbe (virus?) of pleuropneumonia

© GD Animal Health

STUDIES ON AN UNCOMPLICATED CORYZA OF THE DOMESTIC FOWL

VI. COCCOBACILLIFORM BODIES IN BIRDS INFECTED WITH THE CORYZA OF SLOW ONSET

BY JOHN B. NELSON, PH.D.

(From the Department of Animal and Plant Pathology of The Rockefeller Institute for Medical Research, Princeton, N. J.)

PLATE 38

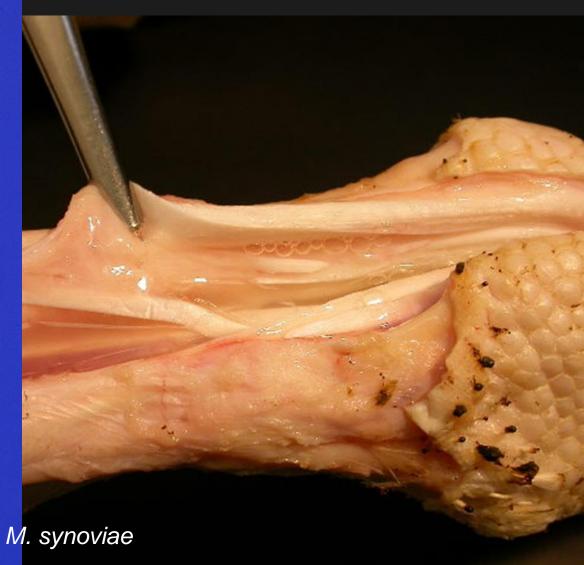
(Received for publication, January 2, 1936)

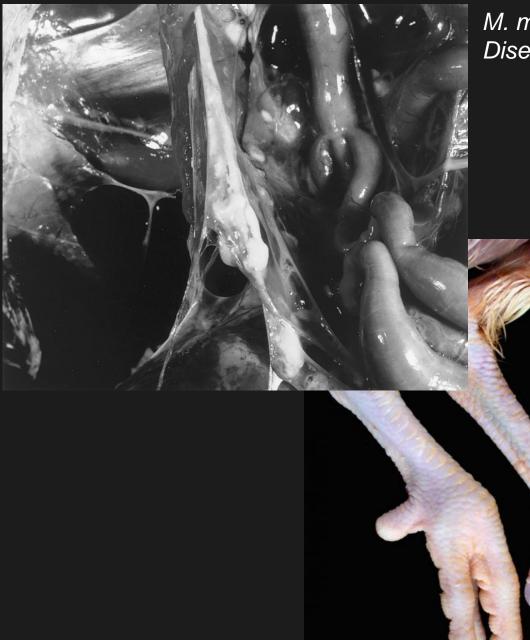
Introduction

- Mycoplasmas are small prokaryotic organisms
- Without cell wall
- Host specific
- Affinity for mucosal surfaces
- Complex nutritional requirements (difficult to culture)

Typical morphology Mycoplasma spp ('fried egg' morphology)

Period	Subject
1936-1965	Discovery important mycoplasma species
1962-1989	Multifactorial disease (synergism, climate, immunesuppression)
1954-1987	Transmission routes
1956-1974	First control programmes
1956-1965	Antibiotic use & its limitations
1970-1994	Immunisation studies commercial poultry
1955-1994	Diagnostic tests: from serology to molecular analysis

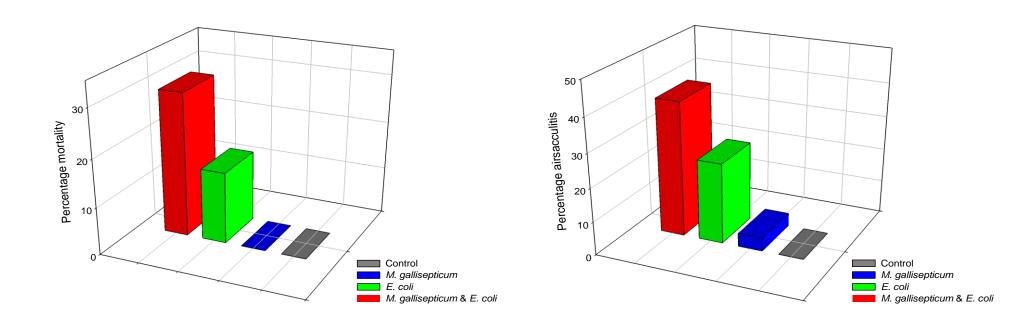



Mycoplasma gallisepticum

A

M. meleagridis Diseases of Poultry (R. Yamamoto)

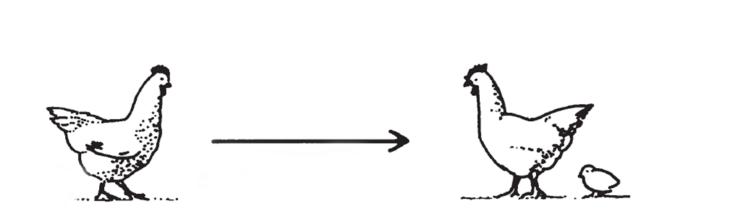
M. iowae Ley et al., 2010

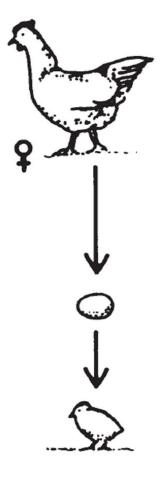


Period	Subject
1936-1965	Discovery important mycoplasma species
1962-1989	Multifactorial disease (synergism, climate, immunesuppression)
1954-1987	Transmission routes
1956-1974	First control programmes
1956-1965	Antibiotic use & its limitations
1970-1994	Immunisation studies commercial poultry
1955-1994	Diagnostic tests: from serology to molecular analysis

1-day-old broilers

Bradbury, 2005. Britisch Poult Sci, 46, 125-136

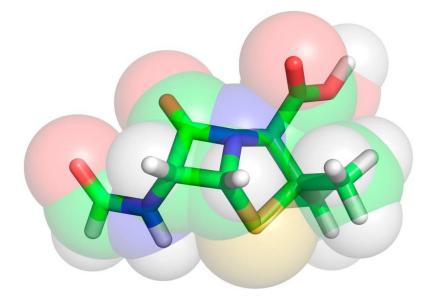

© GD Animal Health



Period	Subject
1936-1965	Discovery important mycoplasma species
1962-1989	Multifactorial disease (synergism, climate, immunesuppression)
1954-1987	Transmission routes
1956-1974	First control programmes
1956-1965	Antibiotic use & its limitations
1970-1994	Immunisation studies commercial poultry
1955-1994	Diagnostic tests: from serology to molecular analysis

Transmission routes

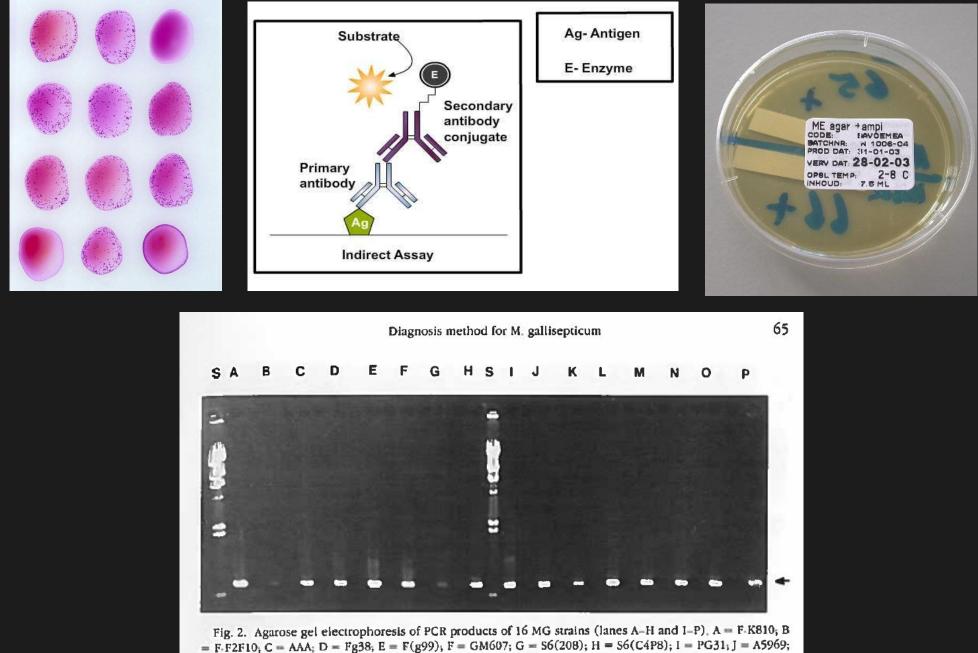
Period	Subject
1936-1965	Discovery important mycoplasma species
1962-1989	Multifactorial disease (synergism, climate, immunesuppression)
1954-1987	Transmission routes
1956-1974	First control programmes
1956-1965	Antibiotic use & its limitations
1970-1994	Immunisation studies commercial poultry
1955-1994	Diagnostic tests: from serology to molecular analysis



Period	Subject
1936-1965	Discovery important mycoplasma species
1962-1989	Multifactorial disease (synergism, climate, immunesuppression)
1954-1987	Transmission routes
1956-1974	First control programmes
1956-1965	Antibiotic use & its limitations
1970-1994	Immunisation studies commercial poultry
1955-1994	Diagnostic tests: from serology to molecular analysis



- Temporary effect
- Resistance
- Residues



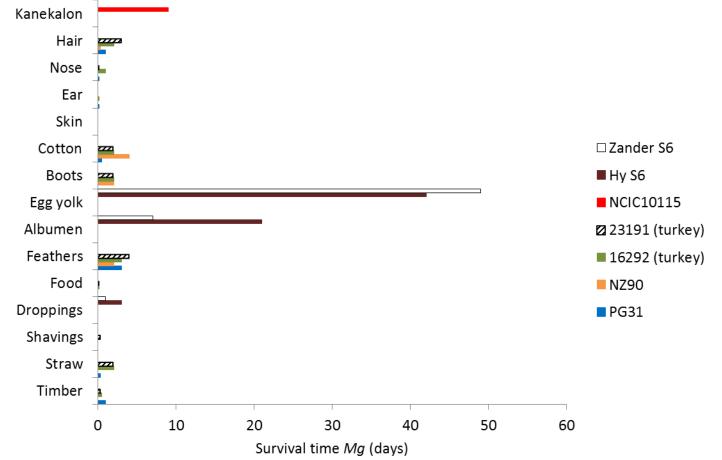
Period	Subject
1936-1965	Discovery important mycoplasma species
1962-1989	Multifactorial disease (synergism, climate, immunesuppression)
1954-1987	Transmission routes
1956-1974	First control programmes
1956-1965	Antibiotic use & its limitations
1970-1994	Immunisation studies commercial poultry
1955-1994	Development of diagnostic tests

Period	Subject
1936-1965	Discovery important mycoplasma species
1962-1989	Multifactorial disease (synergism, climate, immunesuppression)
1954-1987	Transmission routes
1956-1974	First control programmes
1956-1965	Antibiotic use & its limitations
1970-1994	Immunisation studies commercial poultry
1955-1994	Diagnostic tests: from serology to molecular analysis

= F-F2F10; C = AAA; D = Fg38; E = F(g99); F = GM607; G = S6(208); H = S6(C4P8); I = PG31; J = A5969; K = GM747; L = K2101; M = K2101 (36P); N = R; O = V503; and P = F-Conn. Lanes marked with S represent molecular-weight standards (*Hin*dIII-cleaved lambda phage). The arrow corresponds to the 732-bp amplified MG DNA.

Present (90's until now)

Period	Subject
≥1993	Other spp.& strains identified
≥1994	Understanding mycoplasma survival
≥1994	Mycoplasma disease in wild birds
≥1988	Advances in diagnostics
≥1996	Vaccines as control measure
2017	Current situation


M. synoviae

Present (90's until now)

Period	Subject
≥1993	Other spp.& strains identified
≥1994	Understanding mycoplasma survival
≥1994	Mycoplasma disease in wild birds
≥1988	Advances in diagnostics
≥1996	Vaccines as control measure
2017	Current situation

Chandiramani et al., 1966; Christensen et al., 1994; Abolink & Gouws, 2014 © GD Animal Health

Veterinary Microbiology 161 (2012) 96-103

Identification of biofilm formation by Mycoplasma gallisepticum

Hongjun Chen¹, Shengqing Yu¹, Meirong Hu, Xiangan Han, Danqing Chen, Xusheng Qiu, Chan Ding^{*}

Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 518 Ziyue Road, Shanghai 200241, PR China

- Variation between strains
- Biofilm forming *M. gallisepticum* strains seems more resistant to antibiotic treatment and desinfectance
- Suvival advantage outside the host © GD Animal Health

Present (90's until now)

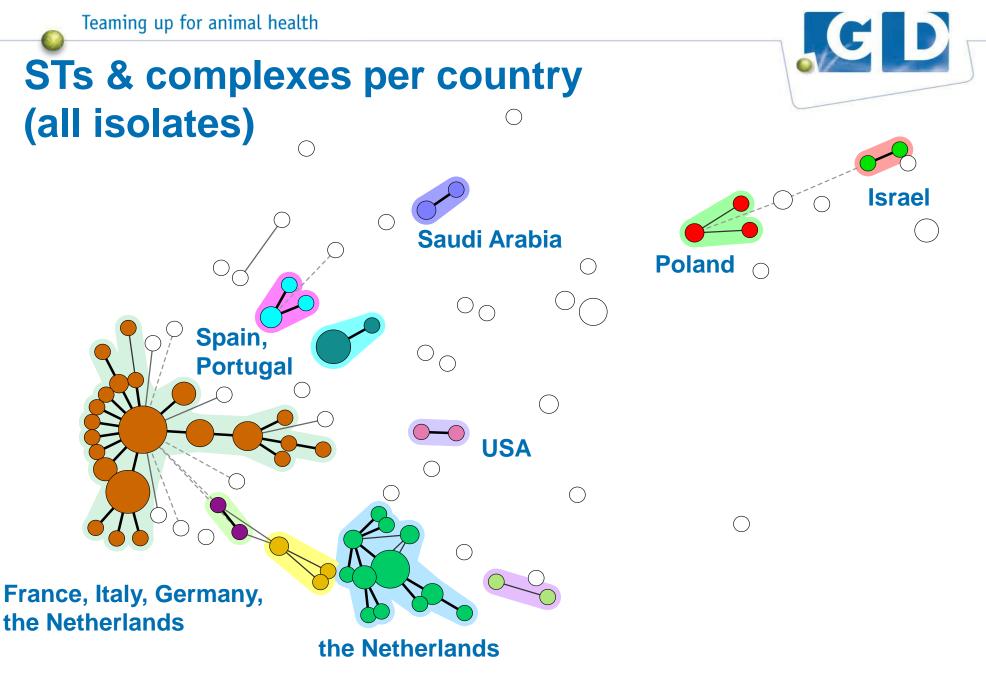
Period	Subject
≥1993	Other spp.& strains identified
≥1994	Understanding mycoplasma survival
≥1994	Mycoplasma disease in wild birds
≥1988	Advances in diagnostics
≥1996	Vaccines as control measure
2017	Current situation

House finch (*Carpadocus mexicanus*)

American goldfinch (*Spinus tristis*)

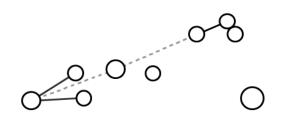
1^{ary} host, 60% †

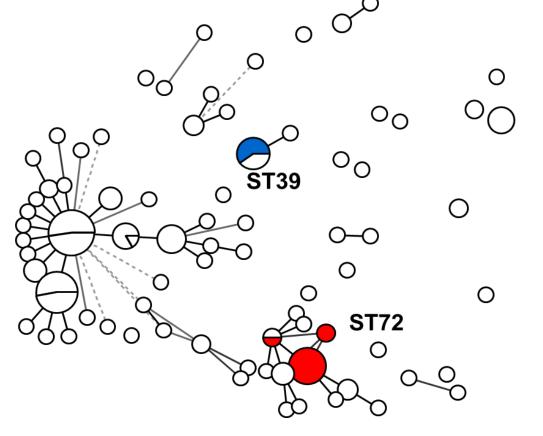
2^{ary} host


Present (90's until now)

Period	Subject
≥1993	Other spp.& strains identified
≥1994	Understanding mycoplasma survival
≥1994	Mycoplasma disease in wild birds
≥1988	Advances in diagnostics
≥1996	Vaccines as control measure
2017	Current situation

Molecular typing techniques


- Band-based
 - PFGE-RAPD-AFLP
- Sequence-based
 - Single gene (vlhA typing)
 - More genes (MLST)
 - Whole genome



Ο

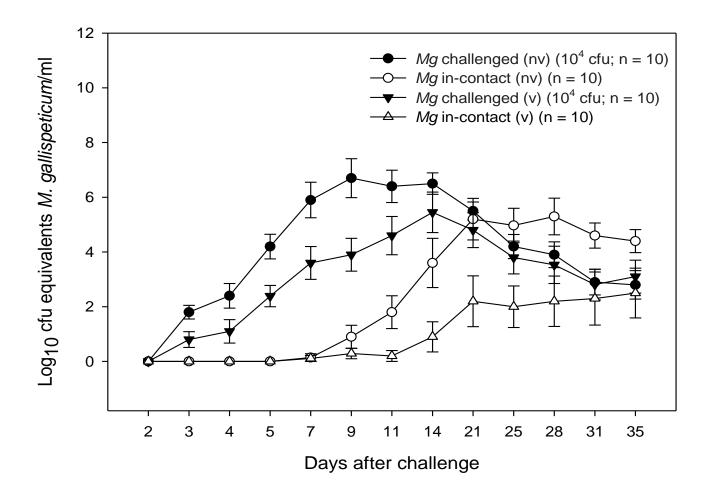
Ms outbreak

0

 \bigcirc

- Farm V (*n* = 8) 09/2003 ST72
- Farm E (*n* = 3) 10/2003 ST72
- Farm W (n = 1) 10/2003 ST72
- Farm M (*n* = 1) 03/2004 ST39
- Farm V (*n* = 2) 10/2004 ST72
- Farm S (*n* = 5) 11/2004 ST39
- Farm F (*n* = 2) 06/2005 ST72

© GD Animal Health


 \bigcirc

Present (90's until now)

Period	Subject
≥1993	Other spp.& strains identified
≥1994	Understanding mycoplasma survival
≥1994	Mycoplasma disease in wild birds
≥1988	Advances in diagnostics
≥1996	Vaccines as control measure
2017	Current situation

Effect MS-H vaccine

Shedding (cfu eq./g trachea mucus)

Transmission rate β

8.3 x 10⁶

 1.0×10^{6}

0.022 (0.015-0.031)

0.0012 (0.00048-0.0024)

Present (90's until now)

Period	Subject
≥1993	Other spp.& strains identified
≥1994	Understanding mycoplasma survival
≥1994	Mycoplasma disease in wild birds
≥1988	Advances in diagnostics
≥1996	Vaccines as control measure
2017	Current situation

Current situation

- Low prevalence *M. gallisepticum* & *M. meleagridis*
 - Control programmes
 - Primary breeding stock free
- High prevalence *M. synoviae*
 - Primary breeding stock free
- M. iowae
 - sporadically reported in commercial poultry

Future

- Reduction prevalence
 - M. gallisepticum developing countries
 - M. synoviae worldwide
- Shift to molecular-based tests
 - Earlier/accurate detection infections
- Prudent use antibiotics (MIC)
- Whole genome sequence
- DIVA tests
- Biosecurity

Thank you for your attention

