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ABSTRACT Salmonella Enteritidis, the most prevalent serovar-causing human 
gastroenteritis, has been traditionally linked to poultry sources. Although antimicro
bial resistance (AMR) is not common in this serovar, increasing levels of resistance 
to fluoroquinolones and ampicillin have been reported in the last few years. Here, 
298 isolates retrieved from different sources (human, livestock, wildlife, food, and 
environment) and years (2002–2021) in Spain were analyzed to evaluate their diversity, 
the distribution of AMR-conferring genes (ARGs), and mutations and reconstruct the 
epidemiology of infection due to this serovar. Isolates were clustered in two major 
clades (I and II), with strains in clade I (including 61.5% of all human isolates) display
ing a pan-susceptible phenotype and not carrying AMR determinants. In contrast, 
clade II included 80.7% of isolates from animal/food/environmental sources, with the 
majority (69.8%) harboring mutations in the quinolone resistance determinant regions 
(QRDR). ARGs, although rare, were mostly found in clade II strains that also carried 
plasmid replicons, among which IncX1 was the most common. Although higher levels of 
phenotypic resistance were found in animal isolates, extended-spectrum beta-lactamase, 
plasmid-mediated AmpC, and carbapenemase-encoding genes were only found among 
human isolates. In summary, the majority of human and animal isolates from Spanish 
sources in our collection were classified in different phylogenetic branches, suggesting 
that additional sources are contributing to the occurrence of foodborne infections in 
Spain. Furthermore, the different distributions of virulence factors and ARGs in isolates 
from different sources and their association with specific plasmids suggest the presence 
of different dynamics contributing to the selection of resistant strains.

KEYWORDS Salmonella, molecular epidemiology, foodborne zoonosis, whole genome 
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F oodborne salmonellosis is the second most common enteric bacterial disease 
reported in Europe and North America, with over 60,050 human cases reported 

in 2021 in the European Union (EU) (1, 2). Different non-typhoidal Salmonella serovars 
may act as human pathogens, but Salmonella enterica subsp. enterica serovar Enteritidis 
(hereafter referred to as S. Enteritidis) has been the most commonly reported serovar in 
the majority of industrialized countries in the last decades (3). In Europe, over 54.6% of 
all notified cases reported in 2021 as well as a large proportion (79.7%) of the reported 
foodborne outbreaks were caused by this serovar (2).

S. Enteritidis is considered a generalist Salmonella serovar, which means that it does 
not have a strong preference for a given host and can infect a broad range of animal 
species (4, 5). However, shelled eggs and poultry meat are typically considered the 
main vehicles of transmission to humans (6, 7). The success of industrialized poultry 
farming from the 1970s onward has been linked to the rise in S. Enteritidis-related 
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human cases, possibly due to the improvement in biosecurity measures targeting 
other poultry-adapted serovars (Salmonella Gallinarum and Salmonella Pullorum), which 
opened an ecological niche for the former to become established in poultry flocks (8, 
9). Since the 1990s, this serovar has surpassed Salmonella Typhiumurium as the most 
commonly associated with human cases worldwide (10). Nowadays, S. Enteritidis is the 
main target (along with S. Typhimurium and its monophasic variant) of the strategies for 
monitoring and control of Salmonella along the different stages of the poultry produc
tion chain (farms, processing plants, retail, and wholesale) (11–13).

S. Enteritidis frequently induces mild self-limiting gastroenteritis, but when invasive 
infection occurs, therapy may be needed (14). In such cases, the presence of resistant 
isolates, in particular multidrug-resistant (MDR, defined as resistant to three or more 
antimicrobial classes) isolates, can complicate the treatment (15–17). Fortunately, and 
in contrast to what is observed in other serovars, S. Enteritidis is typically susceptible 
to most antimicrobials: around 72.1% of the isolates recovered from human cases 
notified in European member states (MSs) in 2021 were susceptible to all antimicrobi
als tested. Nevertheless, several European countries have reported increasing trends 
in antimicrobial resistance (AMR) in clinical S. Enteritidis isolates over the 2013–2021 
period (18); in 2021, the proportion of isolates resistant to certain antimicrobial classes 
classified as highest priority critical importance antibiotics (CIA) (19) reached 22.6% 
(fluoroquinolones) and 3.4% (beta-lactams) (18). High levels of colistin resistance have 
also been reported, a phenomenon that had been previously attributed to the natural 
tolerance to this antibiotic in S. Enteritidis due to the lipopolysaccharide (LPS) membrane 
composition observed in serovars belonging to group D (20). However, a mutation in 
the promoter region of the mgrB gene, a regulator of the PhoP/PhoQ system involved 
in colistin resistance, present exclusively in S. Enteritidis ST11 isolates has been recently 
associated with colistin resistance in this serovar (21).

Several S. Enteritidis multicounty outbreaks involving up to several hundreds of 
cases have occurred in the last decades both in Europe and internationally (22, 23). 
In some cases, as in the well-characterized polyclonal outbreak related to Polish eggs first 
detected in 2016, these outbreaks may last several years (11, 24), further highlighting the 
complex epidemiology of the infection due to this serovar. In this context, the increas
ing application of whole-genome sequencing (WGS) allows more reliable identification 
of outbreak sources (24–26) and is gradually replacing traditional typing methods in 
epidemiological surveillance (27, 28). Its use also allows the identification of S. Enteritidis 
characteristic AMR and virulence determinants (28), as well as the assessment of the 
possible role of specific transmission mechanisms (e.g., plasmids and other mobilizable 
elements) in their dispersion (29). Several studies have also proven the usefulness of 
WGS to detect the presence of predominant S. Enteritidis lineages both locally and 
worldwide and track their evolution (9, 30, 31). Despite the increase in the use of WGS 
worldwide, this technique is still not routinely applied in certain major poultry-producing 
countries like Spain, resulting in its underrepresentation in international studies focused 
on the global dynamics and lineage distributions of this serovar (9, 23, 31–33). Here, we 
performed a WGS-based study on a large panel of S. Enteritidis isolates retrieved from 
a wide range of sources encompassing humans, livestock, wildlife, and food in the last 
16 years to identify the presence of major clades, infer the level of bacterial exchange 
between host populations, and determine the main genetic mechanisms conferring 
resistance to antimicrobials with a focus on CIA classes and mobile genetic elements 
(MGE) involved in horizontal gene transfer (HGT).

RESULTS

Overall, 298 isolates from humans (n = 122), broiler (including broiler meat, n = 54), 
laying hen (n = 44), eggs (n = 50), and other sources (livestock, wildlife, environmental; n 
= 28) retrieved over the 2002–2021 period were included in our study. In silico serotyping 
and MLST typing confirmed the identity of the 298 sequenced isolates as S. Enteritidis 
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belonging to sequence types (ST) ST11 (n = 295), ST3233 (n = 2, retrieved from turkey 
and broiler breeder), and ST183 (n = 1, from wild boar) (Data Set S1).

AMR determinants and MGE

Besides the aac(6’)-Iaa cryptic gene, found in all isolates and not considered from here 
on, up to 26 different AMR determinants were detected in 185 of 298 sequenced 
isolates, including 22 ARGs (present in 45 isolates) and four different chromosomal point 
mutations in the gyrA gene (present in 157 isolates). These AMR determinants confer
red resistance to eight different antimicrobial classes (aminoglycosides, beta-lactams, 
phenicols, lincosamides, quinolones/fluoroquinolones, sulphonamides, tetracyclines, and 
trimethoprim) and antiseptics (quaternary ammonium compounds) (Data Set S1; Table 
S1). The most common antimicrobial class involved in the genetic and phenotypical 
resistance detected was quinolones, followed by colistin and beta-lactams (Table 1).

The observed and predicted (based on the presence of AMR determinants) resist
ance phenotype was evaluated separately for eight antibiotics, tested among different 
numbers of isolates ranging from 164 (colistin) to 295 (nalidixic acid) (Tables 1 and 2). The 
agreement was high (kappa = 0.81–1) for nalidixic acid, beta-lactams, and trimethoprim; 
moderate (kappa≈0.70) for ciprofloxacin and tetracycline; and limited (kappa ≤40) for 
polymyxins (colistin), sulphonamides, and chloramphenicol (Table 1). The A/T substitu
tion in the mgrB gene promoter previously linked to colistin-resistance was present 
in 117 of the 298 isolates of our collection but was only partially associated with the 
resistance phenotype: 97 of the 103 colistin-resistant isolates had the T genotype, but 
this genotype was also found in almost half (30/61) of the colistin-susceptible isolates.

The most prevalent AMR determinants were chromosomal point mutations in the 
gyrA quinolone resistance determinant region (QRDR), present in 136 of the 298 isolates. 
Four different aminoacidic changes in two different gyrA codons (34, 35) were found: 
D87Y was present in 125 isolates; D87N and S83F were present in four isolates each; 
and S83Y was found in three isolates. In addition, two isolates carried a plasmid-medi
ated quinolone resistance (PMQR) gene (qnrS1, present in a broiler isolate with a D87Y 
mutation with elevated MICs to both CIP and NAL, and qnrB19, in a human isolate with 
no mutations in the QRDRs and susceptible to NAL and CIP) (Table 2).

The remaining 20 ARGs (other than qnr genes) were found in a low proportion 
of isolates (14.7%, 44/298). Among these, beta-lactam-associated ARGs were the most 
common (Table 2; Table S1), with up to eight different beta-lactamase encoding genes 
detected in a total of 36 isolates. Extended-spectrum beta-lactamase (ESBL) encoding 
genes were found in nine isolates (which originated from human samples), including 
blaSHV-12 (five isolates), blaTEM-52C (two isolates), and blaCTX-M-14 and blaCTX-M-15 (one 
isolate each). The blaCMY-2 plasmid-mediated AmpC- b-lactamase (pAmpC) gene was 
present in one human and one broiler isolate, whereas the carbapenemase-encoding 
gene blaOXA-48 was present in one human isolate. In addition, two blaTEM-1 variants were 

TABLE 1 Agreement between the observed phenotypes and predicted resistance determinants per tested antimicrobials

Resistance determinants Antimicrobial Genotype-phenotypea K [95% CI]b P Nc

G+/P+ G+/P- G-/P+ G-/P-

gyrA [87:D-N, D-Y]; [83:S-F, S-Y] Quinolones (NAL) 126 7 5 157 0.92 [0.85–0.98] <0.0005 295
gyrA [87:D-N, D-Y]; [83:S-F, S-Y]; qnrS1; qnrB19 Fluoroquinolones (CIP) 100 29 4 158 0.77 [0.66–0.87] <0.0005 291
blaTEM-1b; blaTEM-1d; blaCMY-2; blaSHV-12; blaCTX-

M-14; blaCTX-M-15; blaTEM-52C; blaOXA-48

Beta-lactams (AMP) 31 5 3 252 0.87 [0.79–0.95] <0.0005 291

tet(A); tet(B); tet(K) Tetracyclines (TET) 6 2 3 280 0.70 [0.58–0.81] <0.0005 291
sul1, sul3 Sulphonamides (SMX) 5 1 13 245 0.4 [0.24–0.55] <0.0005 264
dfrA1 Trimethoprim (TMP) 4 0 1 230 0.89 [0.80–0.97] <0.0005 235
cmlA1 Chloramphenicol (CHL) 2 0 11 272 0.26 [0.10–0.42] <0.0005 285
mgrB (A :: T) Polimyxin (CST) 97 30 6 31 0.49 [0.3–0.7] <0.0005 164
aG+: resistance determinant detected; G-: resistance determinant not detected; P+: resistance phenotype; P-: susceptible phenotype.
bKappa agreement and 95% CI.
cN : total number of isolates with information on their phenotypic profile per antimicrobial.
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detected in 25 isolates: blaTEM-1B was present in 10 isolates from humans, seven from 
eggs, and one from broiler breeder, broilers, and laying hens, and blaTEM-1D was found in 
four isolates from laying hens and one from a human case (Table 2).

Regarding other antimicrobial classes, nine isolates harbored tetracycline-related 
genes (tet[A], tet[B], and tet[K]), seven isolates harbored aminoglycoside-resistant genes 
(aadA1 in all seven and aadA2b in two), six genes conferring resistance to sulfamethoxa
zole (su11 or sul3), four to trimethoprim (dfrA1), two isolates carried genes conferring 
resistance to lincosamides (lnu[A]), and two isolates two different antiseptics/efflux pump 
genes (qacE and qacJ) (Table 2).

TABLE 2 Antimicrobial resistance determinants in the isolate collection (n = 298)

No. of determi

nants

Determinant pattern Human 

P1a

Human P2b Human 

outbreaks

Human 

surveillance 

(sporadic)

Broiler 

relatedc

Laying hen 

relatedc

Eggs Other Total

Total isolates 29 14 22 57 54 44 50 28 298

0 Pansusceptible 25 1 17 35 12 19 11 14 134

1 Total 1 determinant 4 6 5 22 38 17 38 13 143

gyrA p. D87N 1 1 1 1 4

gyrA p. D87Y 2 2 2 10 36 15 32 11 110

gyrA p. S83F 1 1 2

gyrA p. S83Y 3 3

blaTEM-1B 10 1 1 6 18

blaCMY-2 1 1

blaOXA-48 1 1

blaTEM-52C 2 2

qnrB19 1 1

tet(K) 1 1

2 Total 2 determinants 3 2 4 1 1 11

gyrA p. D87Y, blaCMY-2 1 1

gyrA p. D87Y, blaCTX-M-14 1 1

gyrA p. D87Y, blaSHV-12 2 2

gyrA p. D87Y, blaTEM-1D 4 4

gyrA p. D87Y, tet(B) 1 1

gyrA p. D87Y, qacJ 1 1

blaTEM-1B, lnu(A) 1 1

3 Total 3 determinants 1 2 3

gyrA p. D87Y, blaTEM1D, 

blaCTX-M-15
d

1 1

gyrA p. D87Y, blaTEM1B , qnrS1d 1 1

gyrA p. D87Y, lnu(A), tet(K)e 1 1

4 Total 4 determinantse 1 3 4

gyrA p. D83F, aadA1, 

blaSHV-12, qacEe

1 1

aadA1, sul1, tet(A), dfrA1e 3 3

5 Total 5 determinantse 1 1

gyrA p. S83F, aadA1, sul1, 

tet(A), dfrA1e

1 1

7 Total 7 determinantse 2 2

gyrAp.D87Y,aadA1,aadA2b,

blaSHV-12, cmlA1, sul3, tet(A)e

2 2

Total patterns 24 different patterns 3 9 2 4 7 7 3 4 24
aIsolates sequenced as part of a project to compare invasive vs. non-invasive infections.
bIsolates sequenced as part of a project focused on resistant strains.
cIncludes isolates from fecal or meat samples.
dThree AMR determinants found but resistance to less than three antimicrobial families.
e MDR isolates (resistance to more than three antibiotic families) are shown in bold.
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Many isolates presenting AMR determinants typically harbored only one (143 
isolates), although 11 isolates presented two, and 10 carried ≥3 determinants. Overall, 
eight of these 10 isolates were classified as multidrug-resistant based on their genotype 
(i.e., carrying determinants conferring resistance to ≥3 antimicrobial classes) (Table 2). 
Of these, four were retrieved from laying hens, three from human cases, and one from 
broiler (Table 2).

Thirteen different plasmid replicons linked with both short (<7,000 pb) and long 
(>50,000 pb) size plasmids were identified in the isolate collection. Both the IncFIB 
and IncFII replicons associated with the 60 kb virulence plasmid pSEV were found 
in 281/298 isolates. Among the remaining 17 isolates, one (the single ST183 strain) 
carried IncFII only, the other carried FIB only, and the other 15 did not carry either. The 
remaining replicons belonged to five incompatibility (Inc) groups (IncX1, IncX3, IncX4, 
IncI1-I[Alpha], and IncL), present in between one and 36 isolates each, to three rep 
plasmid groups (rep13, rep21, and rep7a) present in one to three isolates, and to five 
Col plasmid groups (ColRNA, Col156, ColpVC, Col[pHAD28], and Col440I) present in two 
to 30 isolates. When considering plasmid groups other than IncFIB and IncFII, replicons 
were present, single or in combination, in a total of 58 isolates (1). Up to 71% of the 
isolates presenting these replicons (n = 41) also carried from one to six ARGs (and thus 
a plasmid replicon was not detected in only 4/45 isolates carrying at least one ARG). The 
most prevalent plasmid replicon (other than IncFIB and IncFII) was IncX1, present in 36 
isolates (of which 26 harbored at least one ARG), followed by IncI1[Alpha], present in 11 
isolates (seven isolates also harbored ARGs). Two other Inc replicons (IncX3 and IncL), 
present in one isolate each, were detected in isolates carrying one ARG (blaSHV-12 and 
blaOXA-48, respectively). Finally, two of the three isolates carrying rep7a, one of the two 
isolates harboring rep21, and the two isolates with rep13 also harbored ARGs. None of 
the 30 isolates carrying ColRNA plasmids carried ARGs, but 29 originated from human 
cases (and 26 were clustered in clade ID, see below).

Plasmid characterization

The preliminary analysis of the genetic context (based on short reads assemblies and 
MOB-suite extracted sequences) in isolates carrying both replicons and ARGs indicated 
that the latter were typically contained in the putative plasmid sequences (i.e., in the 
same contig where the plasmid replicon was found) (Table S2): IncX1 replicons were 
associated with a variety of genes including aadA1, blaTEM-1B, blaTEM-1D, dfrA1, qnrS1, 
sul1, tet(A), and tet(B); IncX3 replicon with blaSHV-12; IncL with blaOXA-48; IncI1-I(Alpha) 
with aadA1, aadA2b, blaSHV-12, blaCMY-2, blaCTX-M-14, cmlA1, qacE, sul3, and tet(A), rep13 
with lnu(A); rep7a with tet(K) and rep 21 with qacJ (Table S2).

After the visualization of hybrid assemblies (and MOB-suite detected in such cases) 
and with support from the phylogenetic analysis of the 26 IncX1 ARGs-related sequen
ces, we obtained a classification of these plasmid sequences into four groups (three of 
the original 29 sequences with ARGs were removed due to low quality), and one of the 
26 was classified alone, here named single isolate (Fig. 1a and b). The maximum SNP 
difference between plasmid sequences allocated in the same group was five (Fig. 1b). 
The relaxase type of all these plasmid sequences was MOBP, classified as conjugative 
(Table S2).

The most prevalent group (Group 1), present in 13/26 isolates coming from seven 
different regions, contained the blaTEM-1B gene and had a sequence of 48,180 bp long. 
Group one plasmids were found in six isolates retrieved from eggs (all from 2008), one 
from laying hen (from 2018), and six from human samples (from 2011 to 2021) (Fig. 1a). 
Plasmids belonging to Group 2 (42,414 bp long) contained the blaTEM-1D gene and were 
found in four isolates from laying hen from two Spanish regions retrieved in different 
years (Fig. 1a). Plasmid sequences within both Group 1 and Group 2 were identical. 
Plasmids classified in Group 3 had the longest sequence (57,796 bp long) and contained 
the aadA1, sul1, tet(A), and dfrA1 ARGs (aadA1 and dfrA1 as part of a class one integron) 
and were found in four isolates from laying hen retrieved from two regions in different 
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years over the 2011–2016 period. Their sequences only differed by one SNP (Fig. 1a). 
Finally, the plasmids conforming Group 4 (46,378 bp long and harboring blaTEM-1B) were 
found in four isolates, two coming from clinical cases in consecutive years (2011–2012) 
but different regions, one isolate from eggs and one from broiler breeders retrieved in 
2009 and 2017 in two different regions, with plasmid sequences differing by five SNPs; 
further annotation of their sequences revealed that presented both IncX1 and IncX3 
replicons. The broiler breeder isolates presented also co-integration of the blaTEM-1D 
gene in IncFIB/IncFII. The remaining IncX1 plasmid sequence (presenting also IncX1 
and IncX3 replicons) was not ascribed to any group (single isolate) and contained the 
blaTEM-1B and qnrS1 quinolone resistance gene (Fig. 1a and b).

Only two plasmid sequences containing the IncI1-(Alpha) replicon and ARGs were 
correctly characterized as being part of a plasmid by the bioinformatic tool MOB-suite 
and were compared with another for which hybrid assembly was available. These two 
(92,422 bp long) were identical (100% coverage and identity) (Table S2) carried the 
blaCMY-2 gene and were found in isolates retrieved from broiler (2009) and human 
(2021) samples. The remaining plasmid sequence (114,757 bp) carried six ARGs (aadA1, 
aadA2, and cmlA1 in a class 1 integron, plus blaSHV-12, sul3 and tet[A]) and was carried 
by a human isolate retrieved in 2005. No plasmid groups were identified among the 
plasmid sequences belonging to the remaining replicon types. All rep plasmids, present 
in isolates from animal sources, presented MOBV relaxase type (Table S2).

Phylogenetic analysis

The 298 sequenced isolates differed by 0–1,669SNPs. When the hierBAPS (hierarchical 
Bayesian Analysis of Population Structure) algorithm was applied to the 388 isolates 
included in the phylogeny, these were clustered into four BAPS clades (outlier I, outlier 
II, clade I, and clade II). Two of these clades (outliers I and II) only included S. Enteritidis 
isolates from other studies (36), and the S. ParathyphiA strain used as outgroup (>1,700 
SNPs), and thus, they were considered outlier clades here (Fig. 2). The two main clades I 
and II were then subdivided into five subclades (IA to ID and I*) and four subclades (IIA to 
IID), respectively.

Considering only the sequences from this study (298), clade I contained 109 
isolates (36.6%) that were more genetically heterogeneous (median SNP distance = 
94, Interquartile Range (IQR) = 51–158) compared with the remaining 189 isolates 
(63.4%) included in clade II (median SNP distance = 68, IQR = 47–86) (Fig. 2). The 
median between-clade SNP distance was 416 SNPs (IQR = 404–427). Among the 109 
isolates of clade I, 75 isolates (68.1%) came from human sources, 12.8% from the 
broiler and laying hen-related categories, 7.3% from eggs, and 11.0% from other sources 
(including environmental and wildlife) (Fig. 2). In contrast, 44.5% of the clade II isolates 
originated from broiler and laying-hen related sources, 22.2% from eggs, 8.5% from 
environmental/wildlife, and only 24.9% were retrieved from human samples. Human 
isolates classified in clade I included primarily those related to foodborne outbreaks (n 
= 18/22) and sporadic cases (55/88, project Human P1 and surveillance), whereas clade 
II encompassed 12/14 human isolates selected due to their resistance phenotype to 
third-generation cephalosporins (project Human P2). Overall, 61.5% of the 122 human 
isolates included in our isolates collection were included in clade I, whereas 85.1% of the 
148 isolates from eggs and broiler and laying hen-related sources belonged to clade II. Of 
the 28 isolates categorized as coming from other sources (mostly environmental/wildlife) 
a slightly higher percentage was also grouped in clade II (57.1%) (Fig. 2).

Once the two outlier clades were excluded, the 86 remaining external isolates (i.e., 
those that were sequenced in the frame of other studies) were allocated in similar 
proportions in the two major clades, 48 in clade I and 39 in clade II (Fig. 2). Considering 
all 388 isolates used in the phylogenetic analysis, 157 isolates were allocated in clade 
I (Fig. 2). The predominant subclade here (ID) included 68.8% of the clade I isolates 
with a high proportion of the Spanish human isolates from our study collection (~70%) 
and 15 external isolates; 12 of these 15 were also isolates from human cases from a 
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Spanish travel-associated outbreak (25). Subclades IA, IB, and IC were made up of a 
large proportion of external isolates and only contained one, three, and 12 isolates from 
our collection respectively, whereas clade I* included only external strains (Fig. 2) (32, 
37). Within the four subclades of clade II, IIB, and IID were the most represented ones 
(41.7% and 52.6% clade II isolates, respectively), with 64.5% and 81.7% of their isolates 
originating from food/animal/environmental sources each. Although clade IIB included 
a high proportion of external isolates (37) from several studies and various origins 
(Europe, America, and Asia), all external isolates classified in clade IID (n = 5) had been 
retrieved in Spain or were linked to travel to the country (38). Subclades IIA and IIC only 
contained eight and five isolates, respectively, and all isolates in IIC lacked the IncFIB and 
IncFII replicons. All major clades and subclades included isolates from different decades. 
When the same analysis was carried out including only isolates from the most sampled 
timeframe within the study period including all sources (2011–2019, 241 isolates, Fig. 
S1), a similar picture was observed with the same major clades identified accounting for 
similar proportions of isolates from the different sources (Fig. S2).

In terms of antimicrobial resistance, 102 of the 109 isolates from our collection 
in clade I (93.5%) did not present any AMR determinant, with the remaining isolates 
carrying either a mutation in the QRDR regions (n = 4) or another ARG (one of blaOXA-48, 

FIG 1 Combined representation of plasmid composition (size, replicon, and ARGs content) and phylogenetic relationship of 26 plasmid sequences presenting 

ARGs in IncX1(and IncX1-IncX3) plasmids. (a) Five different IncX1 (and IncX3) plasmid sequence structures showing size, replicon, and ARGs approximate location 

and ARGs family resistance. (b) Maximum-likelihood phylogeny based on SNPs presence after alignment with a hybrid reference (see methodology) of these 26 

plasmid sequences, where symbol branches represent host/source of the samples, and the color strip shows the plasmid group of classification. Here, year and 

region of isolation are shown, and SNPs figures matrix is presented on the right side. (c) Global phylogeny of 338 isolates showing clades and location of isolates 

presenting IncX1 plasmid sequence by the color of the plasmid group. Arrows showed an area where group 3 and group 4 plasmids were located.
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qnrB19 or tet[K]) (Fig. 3; Table 2). In contrast, 83.1% (157/189) of the isolates from our 
collection in clade II contained one or more AMR determinants, with a majority (69.8%, 
132/189) harboring at least one mutation in the QRDR (Fig. 3; Table 2). Among gyrA 
mutations, D87Y was the most represented one in this clade (123/189), followed by 
D87N, and S83F and S83T with only three isolates each. However, although 72.5% of the 
isolates in subclade IIB presented a wildtype QRDR genotype, all the isolates in clade 
IID contained the same gyrA mutation (D87Y) (Fig. 3). All human isolates selected based 
on their resistance phenotype (Human P2), which carried ESBL/pAmpC genes were 
allocated in subclade IID, whereas the only one presenting resistance to carbapenems 
was allocated in clade I (Fig. 3). The A/T mutation of the mgrB promoter was also strongly 
associated to the BAPS clade, with all 109 isolates in clade I presenting the wild-type 
genotype and 181/189 isolates in clade II harboring the mutated genotype (all but the 
eight isolates in subclade IIA) (Fig. 3).

All isolates carrying ARGs in IncX1 plasmids were placed in clade II (Fig. 1c and 3). 
Isolates carrying plasmids from the IncX1-G1 and IncX1-G2 groups were clustered 
together in the phylogeny, with <45 SNPs between their genomes (Fig. 1c and 3). In 
contrast, one isolate carrying plasmids in the IncX1-G3 and in the IncX1-G4 groups was 
located in different branches from the remaining isolates of these same groups (with at 
least 75 and 84 SNP differences, respectively) (Fig. 1c and 3).

Based on the SNP address analysis up to 29 5-SNP clusters containing between two 
and 11 isolates (for a total of 92 isolates) were detected in the full collection including 
external isolates. Twenty-two of these clusters belonged to clade II (IIB, IIC, and IID), and 
the remaining seven were classified in clade I (ID) (Fig. S3). Four of the 29 clusters 
contained more than five isolates (from six to eleven) and were all located in clade II, and 
the remaining 25 clusters contained two to five isolates. The largest 5-SNPs cluster (n = 
11) included 10 isolates from broiler (one of them from broiler meat) and one from 
humans retrieved from 2011 to 2019 in three different regions (with three broiler isolates 
from 2011, 2014, and 2015 and the human isolate from 2016 originating from the same 
region) (Fig. S3). The second largest 5-SNPs (n = 8) cluster contained seven isolates from 
broiler and one from turkey retrieved in a short period (2018–2019) but from five 
different Spanish regions. Two other 5-SNP clusters containing seven and six isolates 
each included exclusively isolates from eggs. The remaining 18 5-SNP clusters in clade II, 
containing between two and five isolates, included 1–2 human isolates along with 
isolates from non-human sources (eggs, broiler, or laying hens) in four of them, with 
human and non-human isolates retrieved in the same or the following year in three 
clusters. All 5-SNPs clusters located in clade I were only formed by pairs of human isolates 
(Fig. S3).

Clade-specific prophages, SPIs, virulence factors, and accessory genes

The most prevalent prophage, present in 381/388 isolates and duplicated in four isolates, 
was Gifsy 2 (NC_010393), followed by 118970-sal3 (NC_031940), present in 239 isolates, 
and RE-2010 (NC_019488) in 130 isolates (Fig. 3). These last two prophages were only 
present simultaneously in two isolates (VISAVET_ZTA14_01520_3SR2, VISA
VET_ZTA20_00822). RE-2010 was mainly found in isolates belonging to clade I (subclades 
IC and ID), whereas prophage 118970-sal3 was generally present in isolates from clade II 
and observed only in five isolates from clade I (subclades IB, IC, ID) (Fig. 3).

A total of 41 Salmonella pathogenicity islands (SPIs) were detected in the 388 isolates 
(S2 Fig), 10 of which were present in all the isolates and contained genes involved in 
functions such as iron uptake system, type III secretion system, transcriptional regulation 
Mg2+ uptake (MgtC, B, MarT, and MisL), intestinal colonization, and persistence determi
nants (shdA, ratA, ratB, sivI, and sivH). Another 19 islands were present in between 360 
and 387 isolates, whereas the remaining 12 SPIs were only found in between 1 and 20 
isolates (Fig. S4).

No particular association between the presence of virulence genes and the BAPS 
clade was found: a total of 183 virulence genes were identified across the 388 isolates 
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(Fig. S2), 96 of which were present in all isolates with another 46 only missing in between 
one and 36 isolates. Of note, the sspH2 gene, involved in the colonization of host cells by 
S. Enteritidis, was missing in 32 isolates from clade ID (26 of which originated from 
humans) (Fig. S4, Data Set S1). The remaining 41 virulence genes were present in 
between one and 24 isolates.

The pangenome analysis identified 13 gene sequences whose presence was linked 
with subclade I and 58 associated with clade II (Table S3). According to their functional 
annotation, genes present exclusively or predominantly in clade II were linked to 
metabolic and regulatory processes including carbohydrate metabolism (PTS_EIIA_2), 
stress response mechanisms (gcdB), as well as nutrient transport and signal transduction 
pathways, supporting their role in environmental adaptation and survival. In addition, 
several gene sequences linked to both clades placed contiguously in the genomes were 
associated with phages further supporting the differential distribution of phages in the 
different clades.

The pangenome analysis identified the presence of gene dgcJ, previously linked to 
bacterial motility (39–41), virulence, and immune system response (42–45), only in clade 
ID isolates. A BLAST analysis revealed that in fact, its sequence was truncated in ID 

FIG 2 Phylogenetic relationship of 388 S. Enteritidis isolates. Dendrogram representation (circular) of maximum-likelihood phylogeny based on SNP presence 

(P125109 reference label showed in pink, S. Parathypi outgroup in gray). Isolates from other studies are labeled in gold and isolates from this study in black. 

Branch symbol shows gyrA mutation types).
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Fig 3 (Continued)
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isolates due to a 58 bp deletion, whereas the full sequence was present in the remaining 
clade I and all clade II isolates.

DISCUSSION

S. Enteritidis emerged globally in the last decades of the 20th century (9, 46) and 
remains the serovar most frequently reported from human cases in the EU (47) and North 
America (9, 23). Poultry products (mainly eggs) are commonly reported as vehicles of this 
serovar (6), but its ability to adapt to different hosts and transmission niches has been 
previously demonstrated (5, 13). Although S. Enteritidis is considered one of the most 
genetically homogeneous serovars of Salmonella (48), different S. Enteritidis lineages that 
present unique genomic features (including AMR determinants), different geographical 
distributions (including international spread), and specific host associations have been 
reported in several studies (23, 25, 31–33, 36, 49).

In the present study, we studied a panel of S. Enteritidis isolates retrieved from 
different sources in Spain over a 17-year period. The predominance of ST11 among the 
isolates in our collection (295/298) is in agreement with previous studies considering 
human strains with a European (50) or international (31, 51) scope. The closely related 
ST3233 (differentiated from ST11 by one mutation in the dnaN housekeeping gene) was 
found in two studied isolates classified in subclade IB (<100 SNP distance to other ST11 
strains), indicating a close relation between these two STs as reported before (52). The 
remaining strain, originating from a wild boar, belonged to the ST183 and was classified 
in a subclade (IA) that only contained another ST183 external isolate retrieved from 
hedgehogs (53).

According to the phylogenetic analyses performed, two major clades (I and II) 
contained most of the isolates in our collection (Fig. 2). These two clades (with the 
exception of subclade IA) would be allocated in the previously named clade B (50), 
a classification supported also by other studies (33, 36, 49, 50) (Fig. 2). The most 
remarkable genomic difference between the two major clades was the distribution of 
AMR determinants and associated resistance phenotypes (Fig. 3). In agreement with 
current knowledge indicating that S. Enteritidis isolates are typically susceptible to 
most antimicrobials (18, 54), we found 134/298 isolates that did not harbor any AMR 
determinant (except for the presence of the cryptic aminoglycoside acetyltransferase 
gene aac(6’)-Iaa). However, 94% isolates in clade I did not carry resistance determinants 
compared with only 17% of the isolates in clade II. According to our analysis, clade I 
was more heterogeneous, compared with clade II in spite of including almost two-thirds 
of the isolates sequenced here (particularly those from animal sources originating from 
multiple regions in the country). The within-clade genetic variability is in line with 
findings in other articles (33), reporting that the mutation rate of MGT4-CC13 (equivalent 
to clade I here based on the location of the external strains included in the analysis) was 
significantly faster (1.5 times) than that of MGT4-CC1, which would correspond to clade II 
(49).

Subclade ID contained 93/109 (85.3%) of the isolates from this study included in 
clade I; isolates from our collection in this subclade were predominantly retrieved from 
humans (78.5%, 73/93), with only 16/93 (17.2%) isolates from poultry sources (laying 
hen, broiler, eggs, and meat) and four from other sources. Subclade ID isolates included 
external genomes from the so-called Atlantic clade (9) or MGT14-CC13 (33), a lineage 
previously reported to harbor less antimicrobial resistance determinants compared 
with the global epidemic clade MGT4-CC1 (9, 36, 49) in agreement with our findings. 
Divergence of MGT14-CC13 has been dated around 1946, around the beginning of 
modern poultry breeding on both sides of the Atlantic (9). Isolates from this lineage have 

Fig 3 (Continued)

FIG 3 Phylogenetic relationship of 388 S. Enteritidis isolates. Top: Clade I and outlier clade dendrogram (rectangular) showing in addition to traits described 

in Fig 2 (clade or branch symbols showing gryA mutation types) the presence of ARGs, phoP_mgrB point mutation, plasmid replicons IncF, IncX1, other Inc 

replicons, phages and other Col type replicons. Bottom: Clade II dendrogram showing same traits as stated above

Full-Length Text Antimicrobial Agents and Chemotherapy

Month XXXX  Volume 0  Issue 0 10.1128/aac.00738-2412

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/a

ac
 o

n 
01

 A
pr

il 
20

25
 b

y 
19

3.
19

0.
19

9.
20

.

https://doi.org/10.1128/aac.00738-24


been retrieved from several sources in North America and Europe, including poultry and 
clinical isolates part of large-scale outbreaks in Europe (24, 25, 55–57). Human isolates 
from our study in ID included most of the outbreak-related human isolates included in 
our collection (18/22 encompassing 18 different outbreaks from 2018 to 2021) along 
with isolates from an outbreak in United Kingdom suspected to be related to traveling to 
Spain (25); in addition, it also 53/86 (61.6%) of the isolates from sporadic cases analyzed 
here (categories “Human P1” and “Surveillance” in supplemental Data Set S1) and 
retrieved during the 2011–2021 period. In contrast, the low representation of isolates 
from poultry sources found in this subclade suggests that S. Enteritidis strains causing 
a significant proportion of human infections in Spain (as outbreaks or sporadic cases) 
during at least the 2011–2021 period would have likely originated from sources other 
than poultry production in the country, since these strains were not commonly found in 
food animals/food products over the same period. Nevertheless, these findings should 
be interpreted with care, given the possible biases impacting the representativeness of 
the human isolates included in our collection (selected among those submitted to the 
National Centre of Microbiology and that thus could have originated from more severe 
cases) in comparison with the animal isolates (collected through active random sampling 
in healthy animals and thus more likely to capture the true distribution of S. Enteritidis 
genotypes present in livestock).

Subclade IC, which accounted for 11.0% of clade I isolates from this study, included 
isolates from wild boar and several poultry productions grouped with strains previously 
classified as part of the North American poultry-associated clade (36, 38) or US lineage 
(9). This indicates that this US lineage/North American poultry-associated clade (38), 
predominant in poultry production in North America from 1969 to 2010 (23) and that 
has been also reported in poultry in the African continent (38), can be found in Spain yet 
likely at a lower prevalence.

The only isolates from pig and bovine included in the study were grouped in subclade 
IB (2.8% of clade I isolates from this study) along with one strain retrieved from laying 
hen and UK isolates from clinical cases belonging to the European clade MGT3-CC30 
(49), thus indicating that they were not genetically related with those identified in the 
classic S. Enteritidis hosts (i.e., poultry) or clinical cases in Spain and would originate from 
sources containing international yet underrepresented lineages in Spain (23, 36, 49).

Finally, within clade I, four external human-invasive S Enteritidis strains classified 
before in Western and Central East African clades (32) (Cao et al.) formed the clearly 
different (> 774 SNPs) subclade I*, in which no Spanish isolates were found. This 
demonstrates a lack of relatedness of Spanish strains with this emerging lineage 
in sub-Saharan Africa. Nevertheless, considering the recent emergence of new Salmo
nella clones linked with travelers in poultry production in Europe (such as Salmonella 
Kentucky ST198) (58), some of which may pose a potential public health threat, their 
distribution should be monitored in the future as suggested before (59).

Isolates in clade II were associated with strains retrieved from multiple locations 
(Europe, Oceania, Asia, Africa, and North and South America) belonging to the so-called 
global epidemic clade (9) or MGT4-CC1, with a MRCA dated around 1975 (33). These 
external isolates were grouped in subclade IIB with 62 Spanish isolates (32.8% of the 
189 clade II isolates from this study) coming from poultry (laying hen, broiler, and 
eggs) sources and (predominantly sporadic) human cases, with isolates from Spain 
typically forming separate clusters from those retrieved from other countries (Fig. 2). 
Point mutations associated with quinolone resistance was not common in this subclade 
(45/62 had a wild type genotype), but in contrast, 19/20 isolates carrying the blaTEM-1B 
gene in IncX1 plasmids were allocated in this subclade.

Nevertheless, the majority of isolates sequenced in this study classified in clade II 
were allocated in subclade IID (60.8%), with the unique five external isolates included in 
this subclade originating also from Spain or being related to travel to this country (38) 
(Fig. 2). Aggregation of strains in “national/regional” lineages deriving from the global 
epidemic lineage has been also reported in S. Enteritidis from other countries including 
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China (37), Chile, and Brazil (9). This “national” subclade was strongly associated with 
the presence of the D87Y QRDR point mutation (all but one isolate presenting it) and 
included primarily isolates from broiler, laying hens, and poultry products (eggs and 
meat) (83/115) with fewer isolates coming from human cases (21/115), suggesting an 
apparently reduced exposure of humans in Spain to isolates found in animals and 
food in this clade. Nineteen of the 21 human isolates (eight selected based on their 
resistance phenotype belonging to category “Human P2” and 13 from sporadic cases) 
were resistant to quinolones as expected based on their genotype (two isolates were 
susceptible in spite of carrying a mutation in the QRDR), indicating a strong association 
between quinolone-resistance and belonging to this subclade.

The predominance of beta-lactamase genes (subclade IIB) and QRDR mutations 
(subclade IID) as the “branding” resistance determinants among the isolates in this study 
is in line with the results from the EU AMR monitoring programs, which also identified 
these two resistance traits as the most common ones (albeit at a low frequency) in S. 
Enteritidis isolates (over 22.6% and 3.4% of resistant isolates to fluoroquinolone and 
beta-lactams in 2021) (18), and with studies including isolates from other regions of the 
world (9, 36, 49).

The D87Y (Asp87Tyr) mutation that was found in all but one of the isolates in the 
“national” subclade IID was also the predominant trait found in S. Enteritidis isolates 
resistant to nalidixic acid retrieved from a region in Spain (Asturias) in which an increase 
in the resistance levels to this antimicrobial had been registered between 2000 and 
2008–2014 (60, 61). In previous studies, the high frequency of this mutation was 
interpreted as a sign of a clonal expansion (60, 62), a hypothesis that would agree with 
the results of the phylogenetic analysis conducted here, although isolates carrying the 
mutation were found throughout the study period (i.e., since 2002 in the case of human 
isolates and 2006 for poultry isolates). Furthermore, when considering only poultry 
isolates (laying hen, broiler eggs, or meat) an almost overall 2:1 ratio of strains carrying 
the D87Y mutation vs. the wild-type genotype (91 vs. 54) was observed throughout 
the 2006–2019 period during which these animal isolates were available (with wild-type 
isolates falling mostly into subclades ID or IIB), indicating a sustained circulation at a 
higher frequency of the variant harboring the mutation. However, this ratio was more 
balanced when considering separately laying hens (19 D87Y vs. 23 wild type) compared 
with broilers (40 vs. 13) or eggs (32 vs. 18).

The high levels of fluoroquinolone resistance found among isolates in clade IIB, 
widely distributed in food animals according to our results, is concerning since this 
antimicrobial class is among the first-line treatment options in certain cases of salmonel
losis (19). The predominance of this lineage carrying resistance determinants in animal 
sources in Spain during the study period (especially in broiler and egg sources) could 
be associated with an increased selective pressure favoring these phenotypes in food 
animals as previously stated (63, 64), due to, for example, the use of enrofloxacin in 
certain poultry productions such as broiler and turkey but not in others (laying hen, in 
which fluoroquinolone-resistant strains were as mentioned not so widespread based on 
our results) (65). The withdrawal of its use in poultry in the United States in 2005 (66) 
could explain the predominance of the North American poultry clade (lacking QRDR 
mutations) in this country, although the increase in the proportion of ciprofloxacin-resist-
ant S. Enteritidis retrieved from chicken, turkey, and associated food products reported 
by NARMS since 2017 (67) could indicate the expansion of the global epidemic clade 
through trade as previously speculated (38). In addition, we found mutations in the gyrA 
gene in 45% of the 20 isolates coming from wildlife (all in clade II and linked in all cases 
but one to the gyrA D87Y mutation), thus demonstrating the circulation of this resistance 
in this environmental niche (68).

Phenotypic resistance to ampicillin was linked to the presence of beta-lactamase 
encoding genes (blaTEM-1B and blaTEM-1D genes) present in IncX1 plasmids, which 
were only found in a subset of clade II isolates (19/20 isolates carrying blaTEM-1B in 
subclade IIB and the remaining blaTEM-1B isolate and all five blaTEM-1D positive isolates 
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in subclade IID) from animal, food, and human samples. The detailed analysis of the 
sequence of these plasmids revealed the presence of different plasmid types (groups) 
differing in length (from 42,414 to 48,180 bp) and sequence identity (<70% between 
groups) (Fig. 1). The ARG content (blaTEM-1B) and length (48 kb) of plasmids in Group 
1, the most abundant, was similar to what was described for a plasmid found in 22 S. 
Enteritidis isolates retrieved between 2008 and 2014 from human cases in Asturias but 
that was absent in cases from 2000 (60, 61). Isolates carrying this plasmid originated 
mostly from eggs and humans and were all located close in the phylogenetic tree 
(between 1 and 45 SNP differences) (Fig. 1) but were retrieved over a 14-year span 
(2008 to 2021) and from multiple different regions, and therefore, it is unlikely that 
they were all epidemiologically related, although some were part of the same 5-SNP 
clusters, and thus, in some cases, epidemiologically related isolates could have been 
detected in different samples. Plasmids from Groups 2 (linked to blaTEM-1B and in clade 
IIB isolates) and 4 (carrying blaTEM-1D and in clade IID isolates) could be related to other 
plasmids described in clinical isolates from the same region that were more abundant in 
2000 compared with 2008–2014 (60, 61), although here, they were all found in isolates 
retrieved between 2009 and 2017. Altogether these findings suggest that at least some 
variants of these plasmids have been circulating in S. Enteritidis in poultry and poultry 
products in multiple regions from Spain for over 10 years, occasionally causing human 
disease. The link between clade II and carriage of ARGs in IncX1 plasmids found here was 
also reported for isolates belonging to the global epidemic clade (36, 69). Plasmid groups 
associated with MDR phenotypes due to carriage of aadA1, sul1, tet(A), and dfrA1 genes 
identified here exclusively in isolates from laying hen should be subjected to particular 
attention due to their potential for AMR dissemination.

Interestingly, 10 of the 11 isolates carrying ESBL/pAmpC genes (blaSHV-12, blaTEM-52C, 
blaCTX-M-14, and blaCMY-2) sequenced here were retrieved from human cases, and all of 
them were allocated in clade II (subclades IIB and IID) (Fig. 3). Although these isolates 
were sequenced precisely due to their resistance to third generation cephalosporins and 
are therefore not representative of the strains causing infections in Spain, they were all 
epidemiologically independent and thus could be considered a representative sample of 
the multidrug-resistant clinical strains circulating in the country. Our results would then 
suggest that MDR clinical isolates carrying ESBL/pAmpC genes in Spain belong to the 
global epidemic clade, although these ARGs are not common in the animal reservoir. 
The only strain carrying a carbapenemase-encoding gene (the blaOXA-48 gene) was 
retrieved from a patient admitted to a hospital, thus confirming the rare circulation of 
these genes in Salmonella. Given the frequency of nosocomial infection with carbapene
mase-producing enterobacteria (especially Citrobacter, Escherichia coli, and Klebsiella), 
the Salmonella strain may have acquired the gene through horizontal transfer within the 
hospital/patient (70, 71).

In addition, we have identified clusters of closely related strains based on previous 
strategies to define epidemiologically related isolates (5-SNPs clusters) (72) retrieved 
from different sources including in some cases isolates from livestock, food, and humans 
in the same cluster, which could indicate the persistence of certain strains along the 
food chain and thus a risk for the consumer. These results should be interpreted with 
care since variations in the methodology (e.g., different variant calling tools or quality 
thresholds for SNP-calling) could lead to different classifications of isolates into 5-SNPs 
clusters, highlighting the need for a standardized system for SNP-calling.

Although the 20 wildlife isolates sequenced here were distributed in both clades 
(eight and 12 in clades I and II, respectively), a difference depending on the host 
species/clade was observed: 5/8 clade I (subclade IB) isolates were retrieved from wild 
boar, whereas 11/12 clade II (subclades IIA, IIB, and IID) isolates were cultured from 
wild bird samples (1). These results indicate that different wild animals may have been 
exposed to different S. Enteritidis lineages, a fact that could be expected in the case 
of urban scavenger birds (storks) but not in other wild birds studied here, such as 
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kestrel. A well-designed sampling would be nevertheless required in order to evaluate 
the prevalence of infection by different S. Enteritidis lineages in these host species.

In this study, we have proven the efficacy of WGS applied to isolates retrieved 
mostly through surveillance programs to provide an overall idea of the genetic diversity 
of S. Enteritidis circulating in humans, livestock, food, and wildlife sources in Spain. 
In summary, our results demonstrate that the two most prevalent lineages described 
worldwide (Atlantic-US and global epidemic) (5, 23, 32, 33) are present in the different 
sources sampled in Spain, with Spanish isolates mostly grouped in three subclades (ID, 
IIB, and IID accounting for 90.6% of the 298 isolates sequenced) two of which (ID and 
IIB) also included external strains from different sources in other countries, whereas IID 
was only formed by isolates linked to Spain. Furthermore, there was a strong association 
between the subclade and the presence of resistance determinants in the chromosome 
(QRDR mutations, found in all but one IID isolates compared with 27% of the IIB and 
only 4% of ID isolates) or in plasmids (found in <15% of the full collection but mostly 
beta-lactamase genes in IncX1 plasmids present only in subclade IIB – blaTEM-1B – 
and/or IID –blaTEM-1D). Although there was a relative overlap between sources across 
these predominant subclades, human isolates were associated with the pansusceptible 
subclade ID (60% of human isolates versus 18% and 17% in subclades IIB and IID, 
respectively), whereas poultry isolates were more commonly part of the fluoroquino-
lone-resistant subclade IID (especially broiler and egg isolates, with ≥60% of isolates 
from these sources in this subclade and 43% of isolates from laying hen compared with 
18%–32% in subclade IIB and 3%–16% in subclade ID from the three sources). Although 
sampling periods for each source were not identical (with older human isolates retrieved 
in 2002 versus 2006 for broilers, 2008 for eggs, and 2011 for laying hens), the consistency 
in the predominance of each subclade in human versus poultry across the study period 
reveals that the apparently limited overlap between the phylogenetic group in human 
versus poultry isolates has been stable in the last 15 years. This would agree with 
the limited resistance to ciprofloxacin/quinolones among human Spanish S. Enteritidis 
isolates in the last two decades according to EFSA (with in fact a decreasing trend in 
resistance during the 2013–2022 period) (18). Nevertheless, the reason for this limited 
overlap is unclear: although a large proportion of the human isolates sequenced here 
were selected randomly among those causing outbreaks and sporadic cases and could 
thus be considered representative of the strains causing foodborne salmonellosis due 
to S. Enteritidis in Spain, only isolates submitted to the National Centre of Microbiology 
were available to us, and thus, there is a chance that this may not include the full extent 
of infections (due to the inclusion of, e.g., isolates leading to outbreaks and/or more 
severe cases, which would be more likely to visit a hospital and have a sample collected). 
Furthermore, there could be a geographical bias in the human collection (with certain 
regions submitting more isolates than others) that could not be formally considered 
here. Nevertheless, the identification of certain genetic differences specific to clade IID 
isolates (and especially the truncation of the sequence of the gene dgcJ, previously 
linked to pathogenicity/virulence) could indicate a competitive advantage under certain 
conditions leading to a higher chance of being included in our collection, although 
further studies should be conducted in order to confirm this hypothesis. Furthermore, 
additional studies considering potential sources neglected in this study (such as, e.g., 
imported foods or non-reported foreign travel, recently highlighted as more important 
than previously thought) (73) would be needed in order to further clarify the epidemiol
ogy of S. Enteritidis infection in Spain, whose complexity this study has demonstrated.

MATERIALS AND METHODS

Study population

The study population was formed by 298 isolates coming from livestock, food, wildlife, 
and environmental and human sources retrieved between 2002 and 2021 (80.9% of all 
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isolates recovered after 2011) (Fig. S1) and originating from all Autonomous Regions 
in Spain, although 38.2% of all isolates originated from Central Spain (Madrid, Castilla 
y León, and Castilla la Mancha) (Fig. S5) (1). A total of 95 isolates from domestic 
animals were selected from a collection of Salmonella isolates assembled in the frame 
of the official AMR surveillance program during 2004–2020 in Spain containing ~500 
S. Enteritidis isolates. The selection of this set of isolates, originating from laying hen 
(46), broiler (37), broiler breeders (13), laying hen breeder (1), turkey (3), bovine (1), and 
swine (1) was based on the host, year, and AMR profiles (see below). In addition, 58 
isolates from food sources (50 isolates from retail eggs and eight isolates from broiler 
meat) retrieved through a Spanish regional Salmonella surveillance program between 
2008 and 2016 were also included. Moreover, 23 S. Enteritidis isolates from wildlife and 
environmental sources were incorporated: 20 isolates retrieved from wildlife through 
different research projects (14 from wild birds—seven from stork samples, two from 
kestrel, and one each from bustard, duck, eagle owl, cattle egret, and heron samples—
five from wild boars, and one from a raccoon) along with three isolates retrieved from a 
sewage water treatment plant in the Madrid region.

Finally, WGS data from 122 clinical isolates from human cases selected from those 
submitted to the National Centre of Microbiology of the Instituto de Salud Carlos III 
between 2002 and 2021 in Spain and sequenced on an Illumina NextSeq platform (see 
below) were included. Of these, 29 isolates (Human P1) were sequenced in the frame of a 
study that assessed differences between sporadic cases of invasive and diarrhea-causing 
Salmonella (collected from 2013 to 2016, Human P1), 14 isolates (Human P2) were 
sporadic cases selected due to a resistance phenotype to third-generation cephalospor
ins (isolates from 2002 to 2017, with 10 retrieved between 2002 and 2010; Human P2), 
22 isolates were included in the representation of 19 outbreaks that took place from 
2018 to 2021 in Spain (with three isolates from a single outbreak included), and the 
remaining 62 isolates were sequenced as part of the routine surveillance activities on 
isolates from sporadic cases between 2011 and 2021 (Data Set S1). Of note, all human 
isolates except the 10 selected due to their resistance phenotype (part of project Human 
P2) were retrieved after 2010 (Fig. S6).

To represent the worldwide diversity of S. Enteritidis, WGS raw reads from 88 isolates 
were downloaded from the European Nucleotide Archive (ENA) and included in the 
phylogenetic analysis (see below). This selection comprised nine isolates included in 
previous studies from South America (Argentina, Brazil, and Uruguay), 17 from North 
America (United States of America), five from Oceania (Australia), 14 from Asia (China 
and Bangladesh), five from Africa (Malawi, Mali, Senegal, Ghana, and Congo), and 26 
isolates from countries other than Spain in Europe (France, Norway, Ireland, Turkey, 
and United Kingdom, with 11 isolates suspected to be travel-associated cases linked to 
Spain). Finally, 12 Spanish isolates available in Enterobase for which information on the 
isolation year was available were also included (Data Set S1).

Information on the antimicrobial susceptibility profile of all livestock, wildlife, 
environmental, and food isolates was determined using the 2-fold broth microdilution 
method (ISO 20776-1:2021). Seven antimicrobials (ampicillin, ciprofloxacin, chloramphe
nicol, gentamicin, nalidixic acid, tetracycline, and trimethoprim) were tested in 166 of the 
176 isolates from non-human sources, with results for between one and four addi
tional antimicrobials (colistin, meropenem, sulfamethoxazole, and tigecycline) available 
for subsets of isolates (Data Set S1). Minimum inhibitory concentrations (MICs) were 
dichotomized into wild-type (here referred to as “sensitive”) or non-wild-type (referred 
to as “resistant”) categories using the epidemiological cutoffs (ECOFFs) indicated by the 
European Committee on Antimicrobial Susceptibility Testing (EUCAST) (Table S4).

All human isolates were tested using the disk diffusion (DD) method, and the 
results were interpreted using the EUCAST or (when not available) the Clinical Labora
tory Standards Institute (CLSI) clinical breakpoint guidelines (Table S4). Results for the 
same seven antibiotics mentioned above were available in the 122 human isolates, 
and additional antibiotics (one to four, same as above) were also available for subsets 
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of isolates (Data Set S1). Finally, cefotaxime, amoxicillin + clavulanic, ceftazidime, and 
cefepime were tested in between eight and 14 human isolates retrieved as part of the 
same project (Human P2) (Data Set S1).

Resistance profiles were associated with the origin of the isolate: A large proportion 
of the animal and egg isolates were phenotypically resistant to fluoroquinolones (and 
other antimicrobials in some cases) reflecting the predominant phenotypes in the 
strain collections from which these originated while human isolates were predominantly 
susceptible (i.e., <20% resistance to any antimicrobial) except for those selected due to 
their resistance phenotype (Human P2) (Fig. S7).

Bacterial DNA extraction and genome sequencing

All livestock, food, wildlife, and environmental isolates (n = 176) were sequenced in an 
Illumina MiSeq platform. DNA was extracted and purified using commercial kits (74), and 
paired-end libraries were prepared by the standard protocols. All isolates from human 
clinical cases (122) were sequenced in an Illumina NextSeq platform. DNA was extracted 
and paired-end libraries were prepared using commercial kits (see Appendix S1 for 
details).

A set of 13 isolates (see in results), representing a diversity of plasmid replicons 
of interest containing ARGs, were selected for long-read sequencing on two different 
MinION Nanopore platforms (Oxford Nanopore Technologies (ONT), UK). DNA extrac
tion, long-read libraries, and base-calling were performed differently depending on the 
institution (74, 75) (Data Set S1) (see Text S1 in the supplemental material for more 
details).

Genome assembly and global characterization

Illumina reads were trimmed with Trimmomatic (76) and evaluated with FastQC (77) 
(version and parameters used for these and other software tools are shown in Table S5). 
Then, reads that passed the quality control were assembled using SPAdes (78), and the 
quality of the assemblies was evaluated with QUAST (79), so that contigs below 200 
base pair (bp) long were discarded. The serotype was verified using the Salmonella In 
Silico Typing Resource (SISTR) (80), assemblies were annotated using Prokka (81), and 
Multilocus sequence typing (MLST) was performed with the mlst software (T. See
mann, https://github.com/tseemann/mlst). Assemblies were screened for the presence of 
point mutations associated with AMR using PointFinder (82), and of antibiotic resist
ance genes, plasmid replicons, and virulence genes using ABRicate (https://github.com/
tseemann/abricate) against different databases: ResFinder (83, 84), PlasmidFinder (34), 
and Virulence Factors Database (VFDB) (85), respectively. The presence of prophages was 
investigated with PHAST (PHAge Search Tool) and PhastER (86, 87).

Agreement between the predicted (presence of AMR-related genes/chromosomal 
mutations) and observed resistance phenotype was determined for each antimicrobial 
using two by two tables and quantified using Cohen’s kappa test through the “caret” 
package in R (Table 1) (35, 88).

Putative plasmid sequences were identified and extracted from the assembled 
genomes using MOB-suite (89). Isolates in which MOB-suite identified sequences with 
outlier plasmid lengths, inconclusive cluster IDs, and/or multiple contigs as part of 
a single plasmid were not considered reliable and thus discarded (Table S3). In the 
isolates harboring both plasmid replicons and AMR genes (ARGs), the genetic context 
(chromosomal or plasmid) of the ARGs (Data Set S1) was determined by characterizing 
the presumptive plasmid sequences identified in terms of ARGs and integron content 
using again ResFinder and IntegronFinder (90). ARGs-carrying plasmid sequences from 
the most prevalent incompatibility group (IncX1, see results) were preliminary clustered 
in putative plasmid groups based on sequence similarity (>99.5% identity and >99% 
coverage) of plasmid-containing contigs using BLAST (91) (Table S2). The remaining 
putative plasmid sequences presenting other plasmid replicons (IncI1-I(Alpha), rep7a, 
rep13, rep21, IncX3, IncL) were also compared using BLAST (Table S3).
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For the 13 isolates selected for ONT long-read sequencing (see above), the FullForce
PlasmidAssembler (FFPA) tool (92) was the genome assembly pipeline used for hybrid 
genome assembly, combining long (ONT) and short (Illumina), as previously described 
(75). In this pipeline, quality of long reads was checked with NanoStat and NanoPlot (93), 
interspecies contamination are assessed by Kraken (94). Adapter and barcode sequences 
were removed with Qcat (https://github.com/nanoporetech/qcat/tree/master/qcat), and 
low-quality (<q8) reads were removed with NanoFilt (93). Complete genome sequen
ces were obtained using Unicycler (95). FFPA tool uses ABRicate (https://github.com/
tseemann/abricate) to scan the genomes for ARGs (ResFinder database) and plasmid 
replicons (PlasmidFinder database) identification.

Once the genomes were assembled and the assembly graphs visualized using 
Bandage (96), plasmid and chromosome sequences were examined separately, and 
further analyses for confirmation of the Illumina-based BLAST IncX1 plasmid group 
classification were conducted (Tables S3 and S6). Thus, a phylogeny based on single 
nucleotide polymorphisms (SNPs) only for these replicon plasmids (since they were the 
most associated with ARGs, see results) was created by aligning the plasmid sequen
ces (hybrid assemblies for those subjected to ONT sequencing and short read-only 
assemblies obtained by MOB-suite for the remaining ones) to a hybrid reference. This 
hybrid reference was generated using the online MAFFT sequence alignment server (97) 
for three full plasmid sequences (hybrid assembly) from three of four different IncX1 
putative groups, and then applying the NormalizeFasta function from GATK (98) and the 
ConsensusSequence function from msa package in R (88).

Genomic analysis

The genetic relationship between isolates (n = 388) was assessed using a SNP-based 
approach. SNPs were identified by aligning the trimmed reads from the isolates to the 
reference S. Enteritidis genome P125109 (NC_011294.1) using Burrows-Wheeler Aligner 
(BWA) and SAMtools (99). The variant calling and consensus sequences were generated 
using BCFtools (100), whereas masking previously identified prophage regions, which 
were detected in advance in the reference sequence using PHASTER. The consensus 
sequences were concatenated to create a multi-FASTA alignment and Gubbins (101) 
was used to filter out putative recombinant regions (highly polymorphic sites). The 
SNPs remaining were identified and extracted using snp-sites (102), and a maximum-like
lihood phylogenetic tree was then built in RAxML (103) using the CAT model of rate 
heterogeneity (GTRCAT) and 10,000 rapid bootstrap replicates. The tree was rooted 
using a sequence from S. Paratyphi A (GenBank accession number SRR3033248) as an 
outgroup.

The hierBAPS (hierarchical Bayesian Analysis of Population Structure) algorithm (104–
107) was implemented through the “RhierBAPs” package (108, 109) in R to identify 
clusters in the sequenced population. BAPs level 1 clusters identified in the SNPs-based 
approach were considered as the main clades in the description of the results, whereas 
level 2 clusters were considered as subclades. Trees were visualized using iTols (110). In 
addition, hierarchical single linkage clustering of pairwise SNP distances was performed 
on the SNPs distance matrix at various distance thresholds (250, 100, 50, 25, 10, 5, and 
0) with the cutree function from “stats” package. The generated code, defined as “SNP 
address” (27), allowed us to identify clusters of isolates at each level of the hierarchy. 
Isolates belonging to the same 5-SNPs clusters were considered potentially epidemiolog
ically related as previously suggested for S. Enteritidis (24, 111).

In order to identify genomic differences between isolates in the different BAPs 
clades, the pangenome of the 388 isolates included in the phylogeny was reconstructed 
using the annotations from Prokka through Roary (112). Outputs generated by Roary 
included a gene presence/absence matrix, concatenated gene alignments, and a list 
of gene clusters. The association between the presence of specific genes/gene clusters 
and the BAPs clades was evaluated using Scoary (113), leading to the identification 
of genes significantly associated with a clade along with the p-values adjusted for 

Full-Length Text Antimicrobial Agents and Chemotherapy

Month XXXX  Volume 0  Issue 0 10.1128/aac.00738-2419

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/a

ac
 o

n 
01

 A
pr

il 
20

25
 b

y 
19

3.
19

0.
19

9.
20

.

https://github.com/nanoporetech/qcat/tree/master/qcat
https://github.com/tseemann/abricate
https://www.ncbi.nlm.nih.gov/nuccore/NC_011294.1
https://doi.org/10.1128/aac.00738-24


multiple testing. Genes significantly associated with a clade were subjected to functional 
annotation using EggNOG-mapper (114, 115), which assigns functional roles to the 
genes identified based on the information provided by multiple databases including 
COG, KEGG, and Pfam. To confirm the results from the Roary/Scoary analysis in the case 
of the dgcJ gene (see results), BLAST was used to determine the presence and location of 
the full sequence of this gene (NZ_CP009091.1:1865142–1866635) in all the assemblies 
in this study. SAMtools with the “faidx” option were used to extract the gene region plus 
approximately 1,000 bp upstream and downstream from the assembled genomes. Then, 
a multi-alignment file of these sequences along with the downloaded complete gene 
was created to identify the differences between isolates.

Finally, the presence of the recently described SNP at position 25 in the promoter 
of the mgrB gene linked to colistin resistance (21) was determined as follows: the 
genomic region spanning positions 1,939,790 to 1,939,720 (approximately 70 bp) of 
the reference sequence of S. bongori N268-08 (NC_021870.1) was downloaded to obtain 
the entire mgrB gene region, including the PhoP promoter. Consensus sequences of the 
388 isolates included in the phylogeny corresponding to the genomic region 1,278,489–
1,278,861 (~140 bp), marking the boundary between the end of the previous CDS 
annotation and the beginning of the next, were extracted. The reference sequence and 
consensus files were indexed, and the specific region (c:1,278,489–1,278,861; ~140 bp) 
was extracted for alignment. The downloaded region from NC_021870.1 was aligned 
with the extracted sequences and used to determine the annotation positions. Multiple 
sequence alignment was carried out using the MAFFT tool after the concatenation of the 
sequences of the extracted regions from the reference and each consensus sequence. 
The alignments were visualized and the genotypes (presence/absence of the SNP) 
were determined considering the BAPs clade and colistin-resistance phenotype when 
available.
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Fig. S6 (AAC00738-24-s0008.jpg). Number of human isolates analyzed per origin 
(project) and year.
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