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Abstract: The detection and quantification of additives in tobacco products are critical for ensur-
ing consumer safety and compliance with regulatory standards. Traditional analytical techniques,
like gas chromatography–mass spectrometry (GC–MS), liquid chromatography–mass spectrome-
try (LC–MS), and others, although effective, suffer from drawbacks, including complex sample
preparation, high costs, lengthy analysis times, and the requirement for skilled operators. This
study addresses these challenges by evaluating the efficacy of mid-infrared (MIR) spectroscopy
and near-IR (NIR) spectroscopy, coupled with multivariate analysis, as potential solutions for the
detection and quantification of additives in tobacco products. So, a representative set of tobacco
products was selected and spiked with the targeted additives, namely caffeine, menthol, glycerol,
and cocoa. Multivariate analysis of MIR and NIR spectra consisted of principal component analysis
(PCA), hierarchical clustering analysis (HCA), partial least squares-discriminant analysis (PLS-DA)
and soft independent modeling of class analogy (SIMCA) to classify samples based on targeted
additives. Based on the unsupervised techniques (PCA and HCA), a distinction could be made
between spiked and non-spiked samples for all four targeted additives based on both MIR and NIR
spectral data. During supervised analysis, SIMCA achieved 87–100% classification accuracy for the
different additives and for both spectroscopic techniques. PLS-DA models showed classification rates
of 80% to 100%, also demonstrating robust performance. Regression studies, using PLS, showed
that it is possible to effectively estimate the concentration levels of the targeted molecules. The
results also highlight the necessity of optimizing data pretreatment for accurate quantification of
the target additives. Overall, NIR spectroscopy combined with SIMCA provided the most accurate
and robust classification models for all target molecules, indicating that it is the most effective single
technique for this type of analysis. MIR, on the other hand, showed the overall best performance for
quantitative estimation.

Keywords: tobacco products; MIR/NIR spectroscopy; multivariate calibration techniques; data analysis

1. Introduction

Tobacco use in Europe began in the 16th century for mystical, social, and medi-
cal purposes, but its harmful health effects became evident by the mid-20th century,
when smoking was linked to lung cancer. Despite the introduction of filtered cigarettes,
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addiction rates and lung cancer cases continued to rise, especially after industrial pro-
duction and the widespread use of cigarettes during World War I [1–4]. Commercial
cigarette brands contain not only fermented tobacco, paper, and filters, but also about
600 additives [5]. These additives serve various purposes. Humectants like glycerin and
propylene glycol are added for moisture retention [6]. Sugars, cocoa, and licorice are
added to replace what is lost of them during drying and to enhance flavor [7,8]. Casings,
applied before drying, make up 1–5% of the tobacco’s weight, while individual flavor
compounds (toppings) account for about 0.1% [9]. In addition to improving taste and
manufacturing, additives can also increase the attractiveness, addictiveness, and toxicity
of cigarettes.

The global tobacco epidemic led to the adoption of the WHO Framework Convention
on Tobacco Control (FCTC) in 2003, which came into force in 2005 and was ratified by
over 190 countries. This treaty aims to reduce global tobacco use through evidence-based
and political measures. It includes strategies to curb both the demand and supply of
tobacco. Article 9 requires countries to measure and regulate the content and emissions of
tobacco products. Additionally, guidelines were established to reduce the attractiveness,
addictiveness, and toxicity of tobacco, with attractiveness being the most detailed aspect
so far. These guidelines were partially adopted by the European Commission in Directive
2014/40/EU [10,11].

The European Directive on the manufacturing, presentation, and sale of tobacco
and related products was updated in April 2014 to reduce the attractiveness of tobacco
products, particularly among children and adolescents, and to regulate nicotine-based
electronic cigarettes for the first time. Key provisions include banning cigarettes and
roll-your-own (RYO) tobacco with characterizing flavors, prohibiting additives that en-
hance toxicity, addictiveness, and attractiveness, and requiring manufacturers to inform
authorities about the ingredients used. Additionally, the directive mandates that health
warnings cover 65% of the front and back of packaging units. It further bans promotional
labeling, ensures the traceability of tobacco products, requires notification to member states
before introducing novel tobacco products, and regulates electronic cigarettes and refill
containers [12].

Several studies have examined violations of legislation related to tobacco prod-
ucts [12–15], which is of interest for inspection services. However, there has been no
quantitative analysis of such violations at the European level to date. This topic is crucial
for consumer safety and is particularly relevant amid the ongoing debate over the safety of
non-tobacco nicotine products, especially electronic cigarettes [16–19].

Recent studies have utilized various advanced techniques to detect additives and
other molecules in tobacco smoking products. Gas chromatography–mass spectrometry
(GC-MS) has been widely used for the comprehensive identification of volatile organic
compounds in tobacco and tobacco smoke [20]. Liquid chromatography–mass spectrometry
(LC-MS) was, for instance, used for the determination of coumarin and its additives [21],
while mid-infrared spectroscopy (MIR) was used for the quantification of total nicotine in
Algerian smokeless tobacco products [22]. For the latter, nuclear magnetic resonance (NMR)
spectroscopy was also applied [23]. High-performance liquid chromatography (HPLC) with
or without MS can be used for a whole range of products found in tobacco products [24],
while inductively coupled plasma mass spectrometry (ICP-MS) and X-ray fluorescence
(XRF) spectroscopy were applied to analyze heavy metals [25,26]. Thermogravimetric
analysis (TGA) [27] and headspace solid-phase extraction [28] were specifically applied to
study several additives, while pyrolysis-GC-MS was used to study aroma compounds and
their behavior during combustion [29].

These techniques, although powerful for identifying specific compounds, have several
drawbacks such as complex sample preparation, high cost, and lengthy analysis times.
They may also miss broad classes of additives and require skilled operators. In contrast,
MIR and NIR spectroscopy with multivariate analysis offer a rapid and non-destructive
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analysis of a wide range of compounds in tobacco products. They require less sample
preparation, provide spatial mapping capabilities, and are generally more cost-effective.

In this paper, the efficacy of MIR and NIR spectroscopy coupled with multivariate
analysis was explored for the rapid and comprehensive detection of four frequently encoun-
tered additives in tobacco products, i.e., caffeine, menthol, glycerol, and cocoa. After initial
data exploration using unsupervised techniques, classification models were developed for
the detection of the targeted compounds, followed by the calculation of regression models
in order to estimate their concentration.

2. Materials and Methods
2.1. Tobacco Samples

A representative set of 12 tobacco products was selected and purchased from the
market. Since products with the targeted additives were hard to find, the samples were
split into different portions. Each commercial tobacco product was spiked with the different
targeted additives in various concentrations. The product as such was considered as the
negative or unspiked sample.

2.2. Reagents and Chemicals

Caffeine was purchased from Fagron (Nazareth, Belgium), methanol (99.9%) from
Biosolve (Valkenswaard, The Netherlands), menthol (>99%) from Merck (Darmstadt,
Germany), glycerol (99.5%) from Acros (Geel, Belgium), and cocoa from Nielson-Massey
Vanillas (Waukegan, IL, USA).

2.3. Sample Preparation

The concentrations of various additives in tobacco were achieved by spiking tobacco
samples with known quantities of the additives and measuring the levels. Each additive
was considered separately, and all models made use of the spiked and the unspiked
samples. There were in total 12 unspiked samples and 140 spiked samples. Menthol was
spiked into tobacco at levels ranging from 1 to 5 mg/g [30]. To achieve this, a mortar
and pestle were chilled in a refrigerator at 4 ◦C for 2.5 h. Following this, menthol and
tobacco were precisely measured using an analytical weighing balance. The measured
ingredients were then thoroughly mixed and homogenized using the chilled mortar and
pestle for 1 min and immediately put in a vial (1 g/vial), which was sealed as soon as
possible. Glycerol was spiked at concentrations from 2 to 5% of tobacco weight [6]. Cocoa
was spiked into tobacco at concentrations from 1 to 20 mg/g [31]. For this process, cocoa
and glycerol were dissolved in methanol to create a solution. The tobacco sample was
then weighed, brought into contact with this solution, and vortexed to ensure thorough
mixing. The sample was left at room temperature to allow the methanol to evaporate.
Caffeine was spiked in small amounts after making a solution with methanol, typically
around 0.1 to 1 mg/g [32]. Firstly, a precise amount of tobacco was carefully weighed.
Next, known quantities of caffeine solution were added to this tobacco sample. Then, the
tobacco sample was thoroughly vortexed and mixed to ensure uniform distribution of
caffeine throughout. Following homogenization, the spiked tobacco samples were analyzed
using chromatographic methods to check the correctness of the spiked concentrations. For
caffeine, HPLC-UV was used; however, for menthol and glycerol, GC-FID was used. The
parameters of the used methods are mentioned in Supplementary Table S1.

2.4. Data Acquisition
2.4.1. MIR

For the analysis, we utilized a Nicolet iS10 MIR spectrometer (ThermoFisher Scientific,
Waltham, MA, USA) equipped with a Smart iTR accessory and a deuterated triglycine
sulfate (DTGS) detector. The Smart iTR accessory features a single-bounce diamond crystal,
which was calibrated weekly using a polystyrene film as a standard. We systematically
recorded infrared (IR) spectra across the wavenumber range of 4000 to 400 cm−1 after
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setting up the equipment. Each spectrum was generated from 32 accumulated scans at
a spectral resolution of 4 cm−1. Data processing was performed with OMNIC software
version 8.3, developed by ThermoFisher Scientific (Madison, WI, USA). After data acquisi-
tion, the diamond crystal was thoroughly cleaned with a soft tissue soaked in methanol,
followed by air-drying. Before analyzing each sample, we conducted blank measurements
to evaluate the crystal’s potential contamination and carry-over effects, adhering to the
strict protocols established by the European Directorate for the Quality of Medicines and
HealthCare (EDQM) (2007) [33]. To ensure instrument accuracy, we recorded background
spectra against ambient air on an hourly basis and included these data in our analysis.
Ultimately, for each additive, we compiled a data matrix with dimensions of 38 × 6949,
where 38 represents the total number of samples and 6949 corresponds to the number of
wavenumbers used for chemometric analysis. The MIR spectra of a menthol-, caffeine-,
glycerol-, and cocoa-spiked sample and the corresponding unspiked sample are shown in
Figure 1.
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Figure 1. MIR data of a sample spiked with glycerol, menthol, caffeine, and cocoa and unspiked sample.

2.4.2. NIR

All samples were scanned using a Frontier MIR/NIR Spectrometer (PerkinElmer,
Waltham, MA, USA) operating in reflectance mode with the NIR reflectance accessory.
Spectra were acquired over the range of 10,000 to 4000 cm−1 with an 8 cm−1 resolution,
averaging 16 scans per spectrum. Background spectra were collected using a diffuse
reflector from Perkin Elmer between individual sample scans. Background subtraction
and arithmetic corrections were applied to minimize background influences on the cap-
tured spectra. At the end, a data matrix with dimensions 38 × 1901 was obtained for
each additive, where 38 is the total number of samples and 1901 the number of included
wavenumbers for chemometric analysis. The NIR spectra of a spiked sample with menthol,
caffeine, glycerol, and cocoa as well as the corresponding unspiked sample are shown
in Figure 2.
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Figure 2. NIR data of a sample spiked with glycerol, menthol, caffeine, and cocoa and unspiked sample.

2.4.3. Data Preprocessing

In chemometrics for IR spectroscopy, data preprocessing involves several crucial steps,
aimed at improving the quality and reliability of spectral data. Baseline correction was
performed using the MIR and NIR (OMNIC software version 8.3) to mitigate baseline
drift or curvature caused by instrumental or environmental factors, ensuring accurate
representation of spectral features. For further analysis of the MIR data, only the fin-
gerprint region was used (2000 to 650 cm−1). In NIR spectroscopy, wavelength range
selection focused on pertinent regions of the spectrum containing significant chemical
information specific to the analysis. Subsequent preprocessing steps were conducted
using Matlab (MathWorks, Natick, MA, USA). Normalization techniques were applied
to eliminate intensity variations resulting from sample concentration or instrumental ef-
fects, facilitating equitable comparisons between spectra. Autoscaling and signal noise
variation (SNV) methods were explored in this context. Derivative transformations were
employed to enhance spectral features, improve resolution of overlapping peaks, and
enhance characterization and analysis [34,35]. Both SNV and derivative transformations
are effective at reducing noise and artifacts, which is often crucial in spectroscopic data
where measurements can be affected by external factors like light scattering, sample hetero-
geneity, or baseline drift. These techniques can enhance important signal characteristics
(e.g., peaks or trends) and help isolate relevant information from confounding factors,
improving model accuracy in subsequent data analysis. The selection of these methods is
driven by their well-established efficacy in improving the interpretability and quality of
spectroscopic measurements.

2.4.4. Selection of Training and Test Sets

For model validation, selecting an external test set is crucial to assess the performance
of the model. In this study, we employed the Duplex algorithm for this purpose. This
algorithm ensures that the test set accurately represents the entire original dataset and
is evenly distributed within the data space [35]. The Duplex algorithm operates by us-
ing Euclidean distances to identify sample pairs. It starts by finding the pair of samples
with the maximum Euclidean distance between them, assigning it to the training set, and
the next pair of samples with the highest Euclidean distance is assigned to the test set.
This process continues by selecting additional pairs with the greatest distances until the
desired number of samples is designated to the test set, while the remaining samples
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are added to the training set [35]. For robust model validation, approximately 20% of
the total samples were designated to the external test set, ensuring that at least two un-
spiked samples were included. The remaining 80% were used to create the training set for
model development.

2.4.5. Principal Component Analysis

Principal component analysis (PCA) is a chemometric technique used to reduce the
dimensionality of large datasets while preserving important information. It achieves
this by transforming the original variables into a new set of orthogonal (uncorrelated)
variables called principal components [36,37]. These components are ordered so that
the first component explains the maximum variation in the dataset, the second compo-
nent explains the maximum variance remaining after the first component is accounted
for, and so on. PCA works by identifying patterns and correlations in the data and
compressing the information into a smaller number of variables that retain as much
of the original variance as possible. This reduction in dimensionality simplifies the
dataset, making it easier to visualize and analyze while minimizing the loss of relevant
information [37,38].

2.4.6. Hierarchical Cluster Analysis

Hierarchical cluster analysis (HCA) is a clustering technique used to group similar
objects into clusters based on their pairwise distances or similarities. HCA builds a tree-
like hierarchical decomposition of the data, where clusters at each level of the hierarchy
are formed by merging or splitting existing clusters. This method does not require a
predefined number of clusters, allowing for flexibility in identifying structures within the
data. HCA can be agglomerative, where each data point starts as its own cluster and is
sequentially merged based on similarity, or divisive, where all data points begin in one
cluster and are recursively split into smaller clusters [39]. HCA is widely used in various
fields such as biology, the social sciences, and data mining for exploratory data analysis and
pattern recognition tasks. For this study, HCA divisive clustering with Ward’s algorithm as
similarity function was used.

2.4.7. Soft Independent Modeling of Class Analogy

Soft independent modeling of class analogy (SIMCA) is a supervised classification
technique that focuses on identifying similarities within classes rather than emphasizing
the differences between them, a method known as disjoint class modeling. In SIMCA,
each class is modeled separately using principal component analysis (PCA) [40]. The
modeling process involves creating a defined space around the training samples of each
class, which is characterized by two distance metrics: Euclidean distance to the SIMCA
model and Mahalanobis distance within the score space [41]. The Euclidean distance
assesses how closely a new sample’s projection corresponds to the SIMCA model of a
given class, while the Mahalanobis distance accounts for correlations among variables and
measures distances based on class covariance structures. When evaluating a new sample, its
projection is compared to the established spaces surrounding each class’s training samples.
If the projection resides within a class’s defined space, the sample is classified into that
class. SIMCA is particularly effective for managing complex datasets with multiple classes,
as it builds distinct models for each class, capturing the variability inherent to each and
allowing for accurate predictions or classifications based on the proximity of new samples
to existing class models [42,43].
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2.4.8. Partial Least Squares

Partial least squares (PLS) is a supervised projection method that shares similarities
with principal component analysis (PCA). In PLS, latent variables are created as linear
combinations of observed variables, with the aim of maximizing their covariance with
a specific response variable. This technique is frequently employed in regression tasks
where the response variable is continuous, such as dosage or concentration measurements.
PLS-discriminant analysis (PLS-DA) is a variant specifically designed for classification
tasks, enabling the analysis of categorical response variables and serving as an effective
classification approach. PLS-DA is widely utilized in pattern recognition and various
classification challenges [44–46].

2.5. Software for Data Analysis

All data processing in this study utilized Matlab version R2019b for scientific and
numerical computing. The SIMCA and PLS algorithms were implemented using the
ChemoAC toolbox version 4.1 developed by the ChemoAC Consortium (Brussels, Belgium).

3. Results and Discussion

MIR and NIR spectra were obtained for all tobacco samples. Before performing PCA,
data preprocessing methods such as auto scaling, SNV, and first and second derivatives were
applied to optimize the PCA results and improve data interpretation. The target molecules
analyzed were menthol (a banned additive in the EU), caffeine (also a banned substance in
EU, due to its stimulant properties), cocoa (used as a flavor enhancer), and glycerol (used as
a humectant). They were selected for their public health and legal significance.

3.1. Unsupervised Classification Models
3.1.1. PCA

PCA score plots were obtained using the various data preprocessing techniques. The
plots were evaluated for their ability to differentiate between spiked and non-spiked
samples for each targeted additive separately. The optimal score plot for the distinction of
menthol-containing samples in MIR was achieved using the second derivative (Figure 3).
The first three principal components (PCs) accounted for over 98% of the total variance
(PC1 = 95.0%, PC2 = 3.0%, and PC3 = 0.1%). The PCA score plots for caffeine, glycerol, and
cocoa are shown in the Supplementary Data (Figures S1–S3). For caffeine, the score plot
obtained after autoscaling, followed by the second derivative, showed the best separation,
capturing over 99% of the total variance (PC1 = 98.0%, PC2 = 1.1%, and PC3 = 0.1%).
For glycerol, the best score plot was obtained with the first derivative explaining 86%
of the variance (PC1 = 77.0%, PC2 = 5.0%, and PC3 = 4.0%), and for cocoa, the best
distinction could be made using SNV, including 97% of the total variance (PC1 = 92.0%,
PC2 = 3.0%, and PC3= 2.0%). In general, PCA was able to differentiate between the spiked
and non-spiked samples for all additives, based on MIR spectral data. According to the
loadings on PC1, the region important for discrimination for menthol is 1800–2000 cm−1

(Figure 4), for caffeine 750–1000 cm−1, and for glycerol 1000–1150 cm−1 and for cocoa, the
regions are 1650–1850 cm−1 and 1400–1600 cm−1 and they correspond to the characteristic
regions in the spectrum of the pure additives. This proves that these regions could be
identified as being responsible for the clustering. The MIR spectrum of menthol and
loading plot on PC1 are shown in Figure 4a,b, respectively. Other spectra and loading
plots on PC 1 for caffeine, glycerol, and cocoa are shown in the Supplementary Data
(Figures S7–S9).
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Figure 4. (a) MIR spectrum of menthol and (b) loadings on PC1 highlighting the region important for
discrimination for menthol.

In NIR, the optimal score plot for menthol was achieved with autoscaling (Figure 5).
The first three PCs explained over 99% of the total variance (PC1 = 99.0%, PC2 = 0.2%,
and PC3 = 0.1%). The optimal score plots for caffeine, glycerol, and cocoa can be found
in the Supplementary Material (Figures S4–S6). For caffeine, the optimal distinction was
obtained with the second derivative, explaining over 98% of the total variance (PC1 = 97.0%,
PC2 = 1.0%, and PC3 = 0.1%). For glycerol, the first derivative was calculated and PCA
explained 95% of the total variance (PC1 = 88.0%, PC2 = 6.0%, and PC3 = 1.0%). For cocoa,
the first derivative was taken too, and PCA captured nearly 98% of the total variance
(PC1 = 90.0%, PC2 = 7.0%, and PC3 = 0.8%).

Overall, NIR was able to show good separations between the spiked samples and non-
spiked samples for each of the targeted additives. After investigation of the loadings on PC1,
no specific wavelengths or wavelength ranges could be identified as being responsible for
the clustering. The NIR spectrum of menthol and loadings on PC 1 are shown in Figure 6a,b,
respectively. The other spectra for caffeine, glycerol, and cocoa and the corresponding
loading plots on PC1 are shown in the Supplementary Data (Figures S10–S12).
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Figure 6. (a) NIR spectrum of menthol and (b) loadings on PC1 highlighting the region important for
discrimination for menthol.

3.1.2. HCA

For MIR spectroscopy, the HCA dendrogram for menthol (Figure 7) revealed two main
clusters: one containing non-spiked samples and the other containing spiked samples.
Similarly, for caffeine, glycerol, and cocoa, the HCA analysis effectively distinguished
between spiked and non-spiked samples (Supplementary Figures S13–S18). Although for
glycerol, it can be seen that the spiked samples are split into two clusters (Supplementary
Figure S15). The second smaller cluster contains only spiked samples of the same original
tobacco sample that seems to behave differently in MIR when spiked with glycerol. For NIR
spectroscopy, the HCA dendrogram for menthol (Figure 8) showed two primary clusters:
one for non-spiked samples and another for spiked samples. Similarly, caffeine, glycerol,
and cocoa samples were also effectively differentiated into spiked and non-spiked groups
using HCA (Supplementary Figures S13–S18). Also, here it can be seen that for glycerol,
the spiked samples are split into two and that the spiked samples for one tobacco matrix
behave slightly different in NIR (Supplementary Figure S16). The same phenomenon is
observed for caffeine (Supplementary Figure S14).
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3.2. Supervised Classification Models

Binary supervised classification models were developed using both SIMCA and
PLS-DA to classify samples based on the presence of the additives. Four distinct models
were developed, i.e., for menthol-containing samples, caffeine-containing samples, cocoa-
containing samples, and glycerol-containing samples. The objective of these models was to
accurately identify and differentiate samples according to the presence of these targeted
molecules. Tables 1–4 present the performance metrics of the best models obtained for
each combination of spectroscopic technique, chemometric method, and target molecule,
including their sensitivity, precision, and specificity.

Table 1. Comprehensive overview of the performance of MIR and NIR, data pretreatment methods,
and SIMCA in the classification of various target molecules.

Spectroscopic
Technique

Data
Pretreatment

Chemometric
Technique

Target
Molecule

No. of
PCs

No. of
Samples in

External Test
Set

Correct
Classification
Rate (External
Test Set) [No.
of Negative

Samples]

No. of
Samples in

the Training
Set

Correct
Classification
Rate (Cross-

Validation) [No.
of Negative

Samples]

MIR

SNV Caffeine 3-2 8 88% (7/8)
[2/8] 30 97% (29/30)

[5/30]

Autoscaling Glycerol 3-1 8 100% (8/8)
[2/8] 30 90% (27/30)

[5/30]

1st derivative SIMCA Menthol 2-1 8 88% (7/8)
[3/8] 30 97% (29/30)

[4/30]

Autoscaling Cocoa 3-2 8 88% (7/8)
[2/8] 30 90% (27/30)

[5/30]

NIR

SNV Caffeine 2-1 8 100% (8/8)
[3/8] 30 100% (30/30)

[4/30]

Autoscaling Glycerol 1-1 8 88% (7/8)
[2/8] 30 97% (29/30)

[5/30]

Autoscaling SIMCA Menthol 2-1 8 100% (8/8)
[2/8] 30 100% (30/30)

[5/30]

Autoscaling Cocoa 2-2 8 100% (8/8)
[3/8] 30 97% (29/30)

[4/30]

Table 2. Classification statistics for cross-validation and test set for SIMCA model.

SIMCA

MIR Caffeine Glycerol Menthol Cocoa

Precision Specificity Sensitivity Precision Specificity Sensitivity Precision Specificity Sensitivity Precision Specificity Sensitivity

Cross-
validation 0.96 0.85 1.00 0.92 0.75 0.66 0.96 0.85 1.00 0.96 0.85 0.66

Test set 0.87 0.50 1.00 1.00 1.00 1.00 0.87 0.50 1.00 0.87 0.50 1.00

NIR Caffeine Glycerol Menthol Cocoa

Precision Specificity Sensitivity Precision Specificity Sensitivity Precision Specificity Sensitivity Precision Specificity Sensitivity

Cross-
validation 1.00 1.00 1.00 0.96 0.85 1.00 1.00 1.00 1.00 0.96 0.85 1.00

Test set 1.00 1.00 1.00 0.87 0.50 1.00 1.00 1.00 1.00 1.00 1.00 1.00
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Table 3. Comprehensive overview of the performance of MIR and NIR, data pretreatment methods,
and PLS-DA in the classification of various target molecules.

Spectroscopic
Technique

Data
Pretreatment

Chemometric
Technique

Target
Molecule

No of Latent
Variables

No of
Samples in

External
Test Set

Correct
Classification

Rate
(External Test
Set) [No. of

Negative
Samples]

No of
Samples in

Training
Set

Correct
Classification
Rate (Cross-
Validation)

[No. of
Negative
Samples]

MIR

1st derivative Caffeine 4 8 100% (8/8)
[3/8] 30 100% (30/30)

[4/30]

Autoscaling Glycerol 2 8 100% (8/8)
[2/8] 30 93% (28/30)

[5/30]

2nd derivative PLS-DA Menthol 7 8 100% (8/8)
[3/8] 30 93% (28/30)

[4/30]

1st derivative Cocoa 4 8 88% (7/8)
[2/8] 30 90% (27/30)

[5/30]

NIR

Autoscaling Caffeine 2 8 100% (8/8)
[2/8] 30 100% (30/30)

[5/30]

Autoscaling Glycerol 6 8 100% (8/8)
[2/8] 30 93% (28/30)

[5/30]

Autoscaling PLS-DA Menthol 4 8 88% (7/8)
[2/8] 30 97% (29/30)

[5/30]

1st derivative Cocoa 8 8 100% (8/8)
[3/8] 30 80% (24/30)

[4/30]

Table 4. Classification statistics for cross-validation and test set for PLS-DA model.

PLS-DA

MIR Caffeine Glycerol Menthol Cocoa

Precision Specificity Sensitivity Precision Specificity Sensitivity Precision Specificity Sensitivity Precision Specificity Sensitivity

Cross-
validation 1.00 1.00 1.00 0.96 0.85 0.50 0.92 0.75 1.00 0.96 0.85 0.66

Test set 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.96 0.85 1.00

NIR Caffeine Glycerol Menthol Cocoa

Precision Specificity Sensitivity Precision Specificity Sensitivity Precision Specificity Sensitivity Precision Specificity Sensitivity

Cross-
validation 1.00 1.00 1.00 0.96 0.85 0.50 0.96 0.85 1.00 0.85 0.60 0.66

Test set 1.00 1.00 1.00 1.00 1.00 1.00 0.96 0.85 1.00 1.00 1.00 1.00

3.2.1. SIMCA

After preprocessing, SIMCA was used on both MIR and NIR data for each compound
separately in binary modeling. The dataset was divided into a training and a test set. The
training set was used to construct the models and for internal validation using 10-fold
cross-validation. Afterward, the test set, kept separate from the training data, was used
for external validation to ensure an unbiased evaluation of the models’ performance on
new, unseen spectral data. This process confirmed the reliability and robustness of the
models in predicting the presence of additives in unknown samples. The developed models
allowed for identifying similarities and differences between the spectra of known classes,
aiding in the classification of unknown samples based on their spectral characteristics.
SIMCA, utilizing various data pretreatment methods, achieved classification accuracies
between 88% and 100% for the external test sets and between 90% and 100% for cross-
validation, as shown in Table 1. For caffeine detection using MIR spectroscopy with SNV
data pretreatment, the best model resulted in one misclassified sample in both the external
test set and cross-validation. In both cases, the misclassification was a false positive, as
indicated by the specificity and precision values in Table 2. Sensitivity, specificity, and
precision were used to evaluate the model’s performance. Sensitivity (true-positive rate)
measures the proportion of actual positive cases correctly identified, ensuring that the
test effectively detects true positives. Specificity (true-negative rate) assesses the test’s
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ability to correctly identify true negatives, minimizing false positives. Precision (positive
predictive value) indicates the accuracy of positive results, showing how many of the
predicted positive cases are truly positive. An analysis of the misclassified samples did
not reveal a clear cause for the false positives, suggesting they may be due to random
modeling errors. The focus remains on minimizing false negatives, as false positives can be
verified by inspectors and confirmed in a laboratory. Using NIR spectroscopy with SNV
pretreatment and the SIMCA technique for caffeine classification, both the external test set
and cross-validation achieved no misclassifications.

For the glycerol samples, the most effective SIMCA model using autoscaled MIR
spectra resulted in one false negative and two false positives during cross-validation, while
the test set achieved no misclassifications. The high performance in external validation
was reflected in the precision, specificity, and sensitivity metrics shown in Table 2. The
misclassified sample during cross-validation had a glycerol concentration of 2% of the
tobacco weight, while the two false positives indicated potential errors within the model.
Misclassifications in the model can occur due to differences between the test samples and
those used for training, known as deviations from the model. Alternatively, a misclassified
sample might be an outlier due to spectral errors related to changes in settings or tempera-
ture variations. The misclassifications during cross-validation were likely due to deviations
from the model. For glycerol classification using NIR spectroscopy with autoscaling pre-
treatment, one sample was misclassified in the test set, while during cross-validation, one
false positive was found.

For menthol, MIR spectroscopy with first-derivative pretreatment led to one false
positive in the external test set and one misclassified sample during cross-validation. The
misclassification could not be conclusively explained and may be attributed to random
modeling errors. In contrast, NIR spectroscopy with autoscaling and the SIMCA technique
achieved no misclassifications in both the test set and cross-validation, demonstrating the
model’s reliability.

For cocoa classification, using MIR spectroscopy with autoscaling pretreatment and
SIMCA, the external test set had one false positive, while cross-validation showed two
false negatives with concentrations ranging from 5 mg/g to 10 mg/g and one sample was
misclassified as a false positive. These misclassifications are likely due to modeling errors.
For NIR spectroscopy with autoscaling pretreatment, the model achieved perfect accuracy
on the external test set, with one false positive during cross-validation, which could not be
conclusively explained.

3.2.2. PLS-DA Model

Subsequently, PLS-DA was utilized, which is a specialized form of PLS tailored for
classification tasks, which enables the multivariate analysis technique to classify samples
based on their spectral properties. The study assessed the classification performance of the
various target molecules using both MIR and NIR spectroscopy, detailed in Tables 3 and 4.

For caffeine, using MIR spectroscopy with first-derivative pretreatment, PLS-DA
resulted in no misclassifications in both the external test set and cross-validation. Similarly,
NIR spectroscopy with autoscaling pretreatment achieved perfect classification for both the
external test set and cross-validation, with no misclassified samples.

For glycerol, MIR spectroscopy with autoscaling pretreatment also showed no misclas-
sifications in the external test set, while cross-validation resulted in one sample misclassified
as a false negative, with a concentration equivalent to 2% of tobacco weight and another
sample was falsely identified as positive. Using NIR spectroscopy, the external test set had
no misclassifications, but cross-validation showed two misclassified samples including one
false negative associated with low concentrations (2% of tobacco weight) and one false
positive, with the cause of the latter remaining uncertain.

For menthol assessment, MIR spectroscopy with second-derivative pretreatment
achieved no misclassifications in the external test set, while cross-validation resulted in
two false positives. For NIR spectroscopy with autoscaling pretreatment, the external test
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set had one false positive and cross-validation showed one false positive as well, with no
clear explanation for the misclassification. For cocoa classification, using MIR spectroscopy
with first-derivative pretreatment, the external test set had one false positive, while cross-
validation resulted in two false positives and one false negative. NIR spectroscopy with
first-derivative pretreatment achieved perfect classification in the external test set, but cross-
validation showed six misclassifications: two false negatives and four false positives. The
latter points at a possible robustness problem of the model. Among the misclassifications,
two samples were incorrectly categorized as false negatives, with concentrations ranging
from 2 mg/g to 10 mg/g and four samples were wrongly identified as false positives.
Despite investigation, concrete explanations for these misclassifications remained elusive,
suggesting potential modeling discrepancies.

Supplementary Figures S26–S33 show the loading plots, reflecting the importance of
each variable on the first PLS factor. No specific regions could be identified as responsible
for the modeling results, when compared to the specific regions in the respective spectra of
the targeted additives.

3.3. Quantitative Models

Caffeine and menthol are banned substances within the European Union, while glyc-
erol and cocoa are for the moment still allowed in the majority of the member states, though
their presence and concentration should be declared to the authorities. Given reported
issues with sample conformity regarding the content of these additives and the fact that
not all countries in the world have banned caffeine and menthol, the study explored the
feasibility of constructing a quantitative PLS model based on MIR and NIR data to estimate
their concentrations in tobacco. Quantification is also important to distinguish between
trace levels or contaminations and intended addition, especially when it comes to seizures
and legal procedures. Validation was again performed using both cross-validation and an
external test set. The statistical parameters for quantification using the PLS model were
evaluated using both MIR and NIR spectroscopy, coupled with various data pretreatment
methods. Metrics including the root mean square error of calibration (RMSEC), the co-
efficient of determination for calibration (R2c), the root mean square error of prediction
(RMSEP), the coefficient of determination for prediction (R²p), the root mean square error
of cross-validation (RMSECV), and the coefficient of determination for cross-validation
(R2cv) were assessed. These metrics provide insights into both the calibration accuracy
and the predictive performance of the models as shown in Table 5. Figure 9 illustrates the
caffeine calibration accuracy and the predictive performance. Similar figures for the other
additives can be found in the Supplementary Data (Figures S19–S25). Figures S26–S33 in
the Supplementary Data show the loading plots for the first PLS factor for the regression
models. When comparing these to the spectra, no specific regions responsible for the
modeling results could be identified.

Table 5. Statistical parameters for quantification of the target molecules using the PLS model.

Spectroscopic
Technique

Data
Pretreatment

Target
Molecule

No. of
Latent

Variables
RMSEC R2c RMSEP R2p RMSECV R²cv

MIR

SNV Caffeine 9 0.0088 0.9983 0.1514 0.7781 0.1634 0.7802
2nd

derivative Glycerol 12 0.1541 0.7331 0.1931 0.6995 0.1923 0.7025

1st derivative Menthol 8 0.0670 0.9582 0.1601 0.7710 0.1580 0.7993
1st derivative Cocoa 8 0.1873 0.8019 0.2074 0.7195 0.1750 0.7584

NIR

1st derivative Caffeine 10 0.0139 0.9983 0.1453 0.7138 0.1079 0.9141
1st derivative Glycerol 9 0.1078 0.8765 0.2052 0.6926 0.1700 0.7667
Autoscaling Menthol 13 0.0806 0.9443 0.3119 0.7572 0.1675 0.7738

SNV Cocoa 12 0.3112 0.7993 0.2816 0.6435 0.1900 0.7190
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Figure 9. Insights into both the calibration accuracy and the predictive performance of the model for
caffeine (model based on MIR spectra using the SNV as pretreatment method).

For MIR spectroscopy, the caffeine model showed calibration values of R2c = 0.9983 and
prediction values of R2p = 0.7781, with an RMSEP = 0.1514. The glycerol model exhibited
an R2c = 0.7331 and an R2p = 0.6995, with an RMSEP = 0.1931. The menthol model
displayed calibration values of R2c = 0.9582 and a prediction accuracy of R2p = 0.7710,
with an RMSEP = 0.1601. For cocoa, the calibration accuracy was R2c = 0.8019, while the
prediction accuracy was R2p = 0.7195, with an RMSEP = 0.2074.

In the case of NIR spectroscopy, the caffeine model demonstrated a calibration accuracy
of R2c = 0.9983 and a prediction accuracy of R2p = 0.7138, with an RMSEP = 0.1453. The
glycerol model showed an R2c = 0.8765 and an R2p = 0.6926, with an RMSEP = 0.2052. The
menthol model achieved an R2c = 0.9443 and an R2p = 0.7572, with an RMSEP = 0.3119.
For cocoa, the calibration accuracy was R2c = 0.7993, while the prediction accuracy was
R2p = 0.6435, with an RMSEP = 0.2816.

Overall, it can be said that the quantitative models could be used to obtain a first
estimation of the content of the targeted additives in the product, allowing to make a
decision on the necessity for further analysis using other methods. It can give an estimation
on the levels of concentration of glycerol and cocoa and make a definite distinction between
trace amounts of caffeine and menthol and intended added doses.

4. Conclusions

MIR and NIR spectral data were collected for a set of spiked and non-spiked tobacco
samples with four additives, namely, caffeine and menthol as banned substances and
glycerol and cocoa that have to be declared. Following data preprocessing, an unsupervised
analysis using both PCA and HCA showed that both techniques were able to give binary
distinction between samples containing and not containing the respective targeted additives.
Based on this initial data exploration, showing that the spectral differences can easily be
linked to the presence of the additives, it was decided to proceed to supervised modeling
for both classification and regression purposes.

For classification, SIMCA demonstrated robust classification performances, achieving
accuracy rates ranging from 88% to 100% on the external test set and from 90% to 100%
in cross-validation (Table 1). In general, it could be observed that the combination of NIR
spectroscopy and SIMCA yielded better predictive models than the models based on MIR
spectroscopy and SIMCA.

Also, PLS-DA modeling was explored, showing accuracy rates for the external test set
between 88 and 100% and between 80 and 100% in cross-validation. In PLS-DA modeling,
both spectroscopic techniques gave models with similar predictive performances.

Overall, NIR spectroscopy combined with SIMCA emerged as the preferred approach.
Based on the results for the external test sets, one could emphasize that the four approaches,
MIR-SIMCA, NIR-SIMCA, MIR-PLS-DA, and NIR-PLS-DA, give very comparable results,
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although NIR-SIMCA results in very good CCRs (correct classification rate) for both the
test set and cross-validation. Especially the latter points are more robust and therefore more
reliable models. This justifies the choice for NIR-SIMCA for the detection or classification
of samples containing the targeted additives.

Regarding regression, both MIR and NIR spectroscopy, combined with suitable data
pretreatment techniques such as SNV, autoscaling, and derivative transformations, can
estimate the level of concentration of the target molecules. For regression, although close,
MIR gave slightly better accuracy than NIR spectroscopy, mainly for the external test set.
The quantitative estimations using spectroscopy should be seen as a first step and would
allow inspection services to seize products and proceed to further analysis if deemed
necessary. The presented approach can give a first idea about the conformity of the glycerol
and cocoa contents compared to the declared contents and can differentiate between
contamination with menthol and caffeine and intended addition.

It can be concluded that MIR and NIR spectroscopy can be used in the analysis
of tobacco products for the presence of regulated additives. It was demonstrated that
both additive detection and quantitative estimation are possible using basic chemometric
techniques, like SIMCA and PLS(-DA), for caffeine, menthol, glycerol, and cocoa. This
research also emphasizes that the selection of pretreatment and data analysis techniques
is highly dependent on the matrix and the targeted molecule and should therefore be
optimized for each additive separately.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/s24217018/s1, Figure S1: (a) MIR spectrum of cocoa; (b) Loadings
on PC1 highlighting the region important for discrimination for the cocoa; Figure S2: (a) MIR spectrum
of glycerol; (b) Loadings on PC1 highlighting the region important for discrimination for the glycerol;
Figure S3: (a) MIR spectrum of caffeine; (b) Loadings on PC1 highlighting the region important
for discrimination for the caffeine; Figure S4: (a) NIR spectrum of cocoa; (b) Loadings on PC1
highlighting the region important for discrimination for the cocoa; Figure S5: (a) NIR spectrum of
glycerol; (b) Loadings on PC1 highlighting the region important for discrimination for the glycerol;
Figure S6: (a) NIR spectrum of caffeine; (b) Loadings on PC1 highlighting the region important for
discrimination for the caffeine; Figure S7: PCA plot obtained with the MIR spectra using autoscaling
for Caffeine. Samples indicated with red stars are spiked samples and with black stars are non-spiked
samples; Figure S8: PCA plot obtained with the MIR spectra using the first derivative for Glycerol.
Samples indicated with red stars are spiked samples and with black stars are non-spiked samples;
Figure S9: PCA plot obtained with the MIR spectra using SNV for Cocoa. Samples indicated with
red stars are spiked samples and with black stars are non-spiked samples; Figure S10: PCA plot
obtained with the NIR spectra using the Second derivative for Caffeine. Samples indicated with red
stars are spiked samples and with black stars are non-spiked samples; Figure S11: PCA plot obtained
with the NIR spectra using the first derivative for Glycerol. Samples indicated with red stars are
spiked samples and with black stars are non-spiked samples; Figure S12: PCA plot obtained with
the NIR spectra using the first derivative for Cocoa. Samples indicated with red stars are spiked
samples and with black stars are non-spiked samples; Figure S13: Dendrogram constructed via
hierarchical clustering on MIR spectra for Caffeine. Samples indicated with 2 are spiked samples
and with 1 are non-spiked samples; Figure S14: Dendrogram constructed via hierarchical clustering
on NIR spectra for Caffeine. Samples indicated with 2 are spiked samples and with 1 are non-
spiked samples; Figure S15: Dendrogram constructed via hierarchical clustering on MIR spectra for
Glycerol. Samples indicated with 2 are spiked samples and with 1 are non-spiked samples; Figure S16:
Dendrogram constructed via hierarchical clustering on NIR spectra for Glycerol. Samples indicated
with 2 are spiked samples and with 1 are non-spiked samples; Figure S17: Dendrogram constructed
via hierarchical clustering on MIR spectra for Cocoa. Samples indicated with 2 are spiked samples
and with 1 are non-spiked samples; Figure S18: Dendrogram constructed via hierarchical clustering
on NIR spectra for Cocoa. Samples indicated with 2 are spiked samples and with 1 are non-spiked
samples; Figure S19: Insights into both the calibration accuracy and the predictive performance of
the model for Cocoa (model based on MIR spectra using the 1st derivative as pretreatment method);
Figure S20: Insights into both the calibration accuracy and the predictive performance of the model for
Menthol (model based on MIR spectra using the 1st derivative as pretreatment method); Figure S21:
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Insights into both the calibration accuracy and the predictive performance of the model for Glycerol
(model based on MIR spectra using the 2nd derivative as pretreatment method); Figure S22: Insights
into both the calibration accuracy and the predictive performance of the model for Caffeine (model
based on NIR spectra using the 1st derivative as pretreatment method); Figure S23: Insights into both
the calibration accuracy and the predictive performance of the model for Cocoa (model based on
NIR spectra using the SNV as pretreatment method); Figure S24: Insights into both the calibration
accuracy and the predictive performance of the model for Glycerol (model based on NIR spectra using
the 1st derivative as pretreatment method); Figure S25: Insights into both the calibration accuracy
and the predictive performance of the model for Menthol (model based on NIR spectra using the
autoscaling as pretreatment method); Table S1: GC-FID parameters to check the correctness of the
spiked concentrations of menthol and glycerol for tobacco samples; Table S2: HPLC-UV parameters
to check the correctness of the spiked concentrations of caffeine for tobacco samples.
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