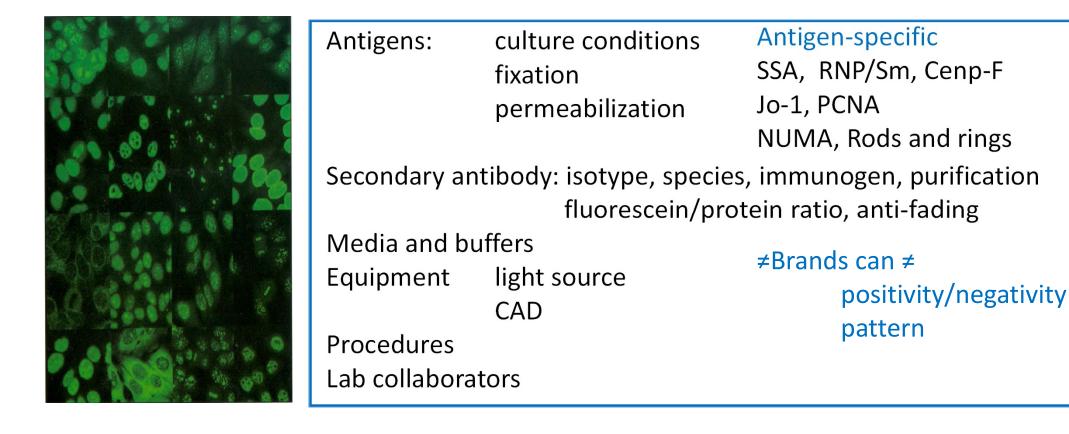
Detection of antinuclear Antibodies: Recommendations from EFLM, EASI and ICAP: QA, Lot Evaluation & Verification, a practical Approach

Martine Vercammen


Department of Laboratory Medicine, AZ Sint-Jan, Brugge Sciensano non infectious serology committee EFLM Working group Autoimmunity testing. Analytical verification/validation

Lot acceptance and monitoring

Internal quality control

Recommendations EFLM EASI ICAP				
References				
Survey EFLM EASI ICAP Topic	%			
How to do it: literature – practical examples				

HEp-2(000) IFA variability

Bonroy et al CCLM 2023, 61(7), 1167–1198; Dellavance et al J Bras Patol Med Lab 2013,43:182-90; Wener et al Arch Pathol Lab Med 2021;145:937-42;

Analytical validation/verification

<u>Validation</u>: objective evidence (by documenting performance characteristics) that a method/application is adequate for the intended use

<u>Verification</u>: abbreviated process that confirms via objective evidence that an already validated examination procedure is appropriate for a specific intended use in one's own laboratory

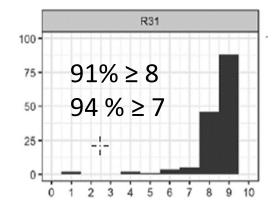
WHO BS/95, 1973. 1995 ; Sarewitz SJ. 2013; webapps.cap.org; ISO 9000:2005; Directive 98/79/EC Regulation (EU) 2017/746 Commission Decision 2010/227/EU; National guidelines

Performing verification of commercial method (n=187)				
Yes	80			
No verification, rely on kit insert	14			
No verification, rely on publications	4			
No verification, rely on kit insert and publications	2			

nroy et al CCLM, 61(7), 1167–1198. https://doi.org/10.1515/cclm-2023-0209 and Adapted from Vercammen et al. CCLM, 61(7), 1199–1208. https://doi.org/10.1515/cclm-2023-0210

Analytical verification

HEp-2(000) cells: density, distribution morphology, mitotic cells


Trueness: method comparison versus characterized samples: % positivity/negativity nucleus and cytoplasm patterns titer

Precision

Pipetting device

R31: Analytical verification: Trueness

R 31. Each laboratory should demonstrate that its Hep-2 IFA method detects the major clinically relevant patterns as well as the major clinically relevant antigen reactivities, both in the nuclear and cytoplasmic compartment. Grade A/B

R31: Analytical Verification of Pattern. Recommendations

Characterize	S	QC target olid phase assays linical information
Clinically rel	evant patterns/reactivities	
AC-1	nuclear homogeneous	dsDNA
AC-4 <i>,</i> 5	nuclear speckled	SSA/Ro60, Sm/RNP
AC-8,9,10	nucleolar	Scl70, RNA polymerase III
AC-3	centromere	CenpB
AC-6	multiple nuclear dots	sp100
AC-11,12	nuclear envelope	gp210
AC-19,20	cytoplasmic speckled	Jo-1
AC-21	reticular/antimitochono	drial AMA-M2
Number of s	amples	
	5/pattern	
	10 negatives	

Bonroy et al CCLM, 61(7), 1167–1198. https://doi.org/10.1515/cclm-2023-0209

Analytical verification. Survey

Variability in approach towards verification > origin, level and characterization samples

Origin of samples (n=149)	%	Level of sample positivity (n=133)	%
EQC samples exclusively	9	Only stronly positive samples	10
Patient and EQC samples	45	Only weakly positive samples	4
Patient samples exclusively	46	Combination	86

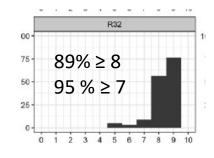
Characterization of patient samples (n=136)	%
Clinically characterized	30
Laboratory characterized Method comparison and/or follow-up tests	44
Both clinically and laboratory characterized	26

Adapted from Vercammen et al. CCLM, 61(7), 1199–1208. https://doi.org/10.1515/cclm-2023-0210

R32: Analytical verification: Precision

Precision is an essential verification requirement

ISO 15189:2012, Sarewitz SJ. 2013; webapps.cap.org, Mulder et al. Autoimm Rev 2018;17:513-7, Sack et al. Auto Immun Highlights 2020;11:12.


R 32.

Each laboratory should verify the precision of the method used.

The approach will depend on how the data are handled: binomial (positive/negative), ordinal (titers) or continuous (fluorescence intensity measure results) Grade A/B

Verification of precision (n=225)	%
yes	72
- Between-run only	17
- Within-run only	5
- Between- and within-run	78

Adapted from Vercammen et al. CCLM, 61(7), 1199–1208. https://doi.org/10.1515/cclm-2023-0210

Analytical verification: Precision

Qualitative tests

EASI

10 replicates of a negative sample 10 replicates of positive sample (low, medium, high) +/- 1 titer between run

Sack Auto Immun Highlights 2020;11:12

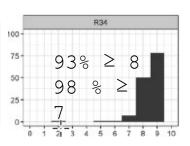
CAD FI

Results qualitative and semi-quantitative — quantitative results CLSI EP05A3; CLSI EP15-A3 State-of-the-art publications 6-20 replicates

Bonroy CCLM 2013;51:1771-9; Bizzaro Autoimm Rev 2014;13:292-8; Bossuyt; Van Hoovels CCLM 2018;56:258-61; Bogaert CCLM 2019;57:990-8

Analytical verification: Pipetting device

Pipet	ting Ver	ificat	ion Test									1.35		2
Date / Tim	le		16-1-2024		6		-							
Robot Seri	ial No	8			2 6 - 2	2 ;	8							
Test Resul	lts [mOD]													
	450 nm - 620													
Difference	Disp. 1	Disp. 2	Disp. 3	Disp. 4	Disp. 5	Disp. 6	Disp. 7	Disp. 8	Disp. 9	Disp. 10	Disp. 11	Disp. 12	Mean	CV
Ch.1	480	4			507	507	509	509	492	494	494	459		
Ch.2	529	4	1.5°		524	489	491	522	514	462	491	485	2	
Ch.3	483	5	12 July 12 Jul	9 517	499	497	511	498	504	479	483	459	() () () () () () () () () ()	
Ch.4	508	50	6 48	9 521	536	501	486	525	518	469	497	518)	
Ch.1	481	4	34 50	6 495	493	525	510	480	493	514	484	450	493,0	3,4%
Ch.2	505	4	39 49	483	523	483	501	538	496	469	485	504	495,6	4,2%
Ch.3	480	n 53	24 50	3 480	502	507	490	490	512	534	477	457	496,3	3,9%
Ch.4	522	GP 5()2 50	0 513	529	498	503	531	484	473	508	502	505,8	3,5%
									2			Q	497,7	3,8%
			Criteria	Result	Pass/Fail									
CV per C	hannel		59	6 4,2%	Pass									
CV over a	n		59	% 3,8%	Pass									
Date	16-1-2024			Operator										
				Operator Sig	nature									


Analytical verification: Carry-over

A. HCG High 13522,96 IU/L B1.HCG low B2.HCG low	mean B1 mean B3	10,782 IU/L 6,90 IU/L			
B3. HCG low	(paired t-test 0,018 > 0,05)				
A. HCG High B1.HCG low B2.HCG low	% carry-over				
B3. HCG low A. HCG High	<u>mean B3 - mean</u> mean A	<u>B1</u> *100			
B1.HCG low B2.HCG low B3. HCG low	10,82-6,90 13522,96	*100 = 0,03% (< 0,1%)			

R34 R35 Clinical validation

R 34

According to ISO 1589, CAP directives and the new 2017 IVD regulation, the manufacturer is responsible for the clinical validation of a CE/FDA labelled test. National regulation can formulate additional requirements.

R35

85% ≥ 8

 \geq

92 %

100

75.

R35

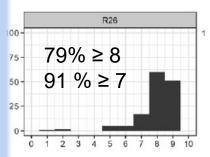
Validation of a HEp-2 IFA method is preferentially done in large multi-center studies including a sufficient number of diagnostic samples of clinically characterized paGrade B and controls. Such studies should allow to estimate test (Dragnostic sensitivity and specificity) Test-result specific likelihood ratio's

collaboration clinical immunologists, clinicians, manufacturers

R26: Lot acceptance and monitoring

Literature review

Variation has been shown between brands


Variation linked to lot changes of the same brand have also been suggested ISO 15189:2012> each new reagent lot and shipment should be verified before use CLSI EP26-A *R 26*.

Francescantonio PL et al. Rev Bras Reumatol, 2014;54:44-50. Cruvinel WM et al. Adv Rheumatol. 2019;59:28. Dellavance A et al.J Bras Patol Med Lab. 2013;49:182-190. Van Hoovels L et al. Clin Chem Lab Med. 2018;56:258-261. Maenhout TM et al. Clin Am J Clin Pathol. 2012;137:825-830. Copple SS et al. Am J Clin Pathol. 2012;137:825-830. Silva MJ et al. Front Immunol. 2022;12:798322. Lot-to-lot variability of conjugate and/or substrate should be evaluated before implementing a new lot.

This can be done by patient-derived IQC samples supplemented with samples selected for purposes minimally covering different cell compartments (nucleus and cytoplasm) an different titer levels.

Grade A/B

Lot acceptance and monitoring

CLSI LA02-A2

Brazilian guidelines

Low titer SSA Panel negative and positive characterized sera

Panel broad array of patterns antigens emphasis susceptible to damage: Jo-1, SSA, RNA polymerase, PCNA Immunologically well characterized morphologically well characterized

Francescantonio PL et al. Rev Bras Reumatol, 2014;54:44-50.; Cruvinel WM et al. Adv Rheumatol. 2019;59:28.; Dellavance A et al. J Bras Patol Med Lab. 2013;49:182-19

Lot acceptance criteria

IQC patient

Pattern: no deviation Titer: +/- 1 dilution Probability index/FI: target +/- 2 SD

Routine patients

n samples with pattern deviation n samples with FI deviation n samples with titer deviation Statistical comparison of FI Statistical comparison of median FI

Lot acceptance and monitoring: survey

Limited lot-to-lot evaluation was performed by 68% of the laboratories.

Lot change procedure > samples used (n=173)

Using exclusively patient samples	18 %
Using exclusively commercial samples	42 %
Combination of patient and	40 %
commercial samples	

For patient samples (n=89)

1 p	attern	37 %
2 0	r 3 patterns	24 %
> 3	patterns	30 %
oth	er	9 %

Торіс	Number of respondents	%
Limitation of lot changes	259	47

Adapted from Vercammen et al. CCLM, 61(7), 1199–1208. https://doi.org/10.1515/cclm-2023-0210

Lot acceptance - Pattern and titer: example 1

IQC patient samples

Routine samples

	Auto titer Lot 1	Auto Titer Lot 2	FI Lot 1 1/80	FI Lot 2 1/80
Positive patient Ro-60 AC-4	640	640	634	771
Negative patient			38	33

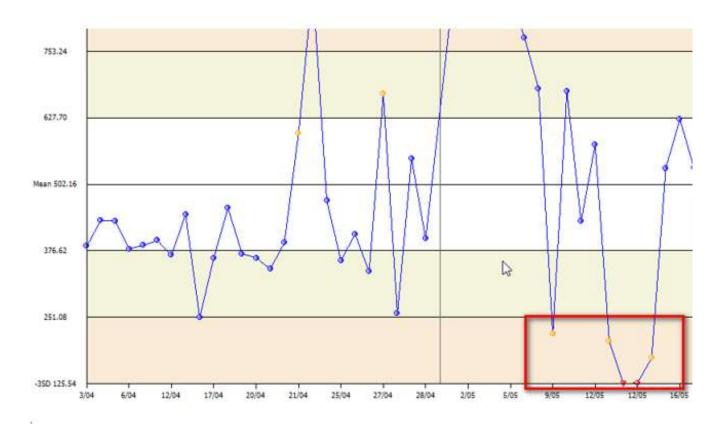
Pattern	Lot 1	Lot 2
	AC-3	AC-3
Titer	FI Lot 1	FI Lot 2
80	3489	4129
320	2071	1465
1280	261	235
2560	84	111
5120	40	46
autotiter	> 5120	> 5120

Data AZ Sint-Jan

Lot acceptance - Routine patients example 1

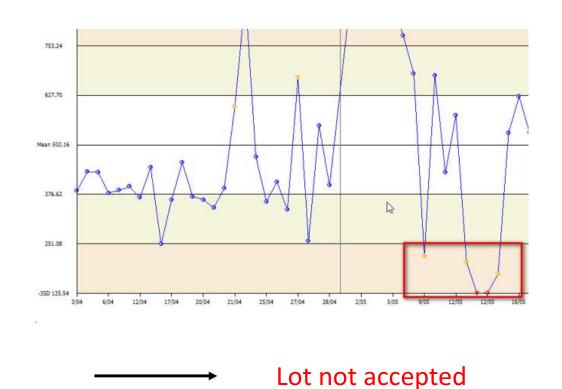
dsDNA/ ENA	Lot 1 Pattern	Lot 1 Titer	Lot 1 Pattern	Lot 2 Titer
NEG	AC-1	640	AC-1	640
NEG	AC-1	160	AC-1	160
	AC-1 AC-8,9,10	160 <mark>160</mark>	AC-1 AC-8,9,10	160 <mark>80</mark>
NEG	AC-4,5 AC-19, 20	80 80	NEG	
NEG	AC-4,5	160	AC-4,5	80
NEG	AC-4,5	80 (n= 5)	AC-4,5 (n=4) NEG (n=1)	80
Ro-52	AC-4,5 AC-19, 20	320 <mark>320</mark>		320 160
	AC-21	1280	AC-21	640

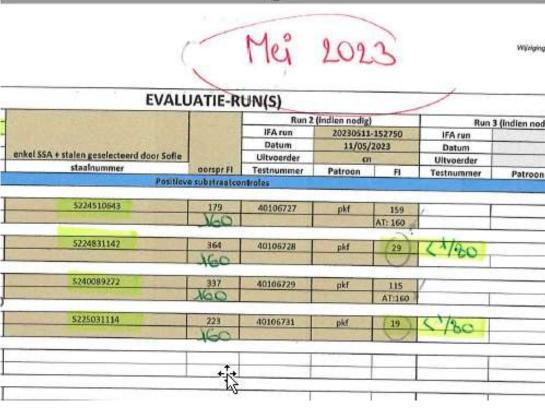
Example 1: lot accepted

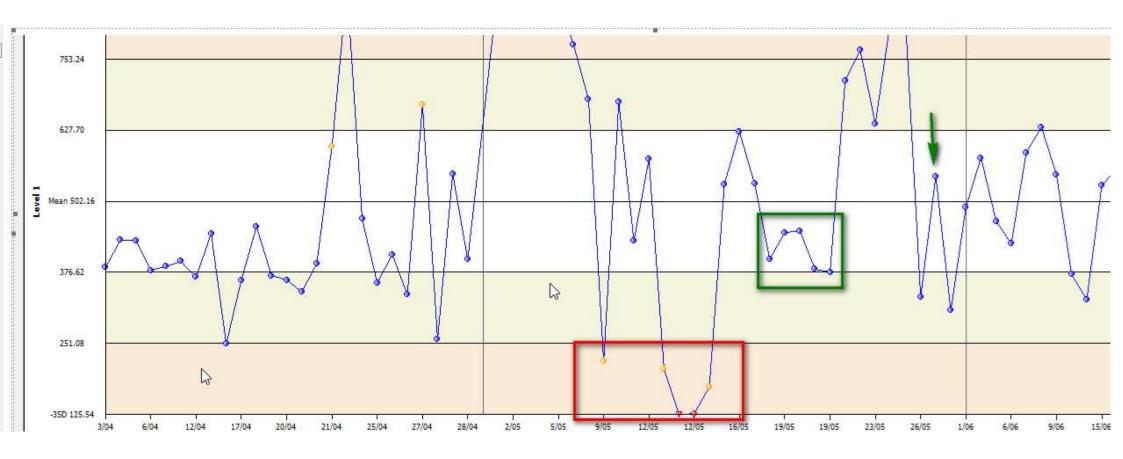

dsDNA/ ENA	Lot 1 Pattern	Lot 1 Titer	Lot 1 Pattern	Lot 2 Titer
Cenp-B Ro-52 Ro-60 SSB	AC-3	5120	AC-3	5120
dsDNA cenpB	AC-1 AC-3	5120 5120	AC-1 AC-3	5120 5120
RNP Ro52 Ro60	AC-4,5 AC-19,20	2560 80	AC-4,5 AC-19,20	2560 80
Ro52 Ro60 SSB	AC-4,5 AC-19,20	1280 80	AC-4,5 AC-19,20	1280 80
NEG	AC-4,5 AC-19, 20	<mark>160</mark> 80	AC-4,5 AC-19, 20	<mark>80</mark> 80
	NEG (n=4)		NEG (n=3) AC-4,5(n=1)	80

Data AZ Sint-Jan

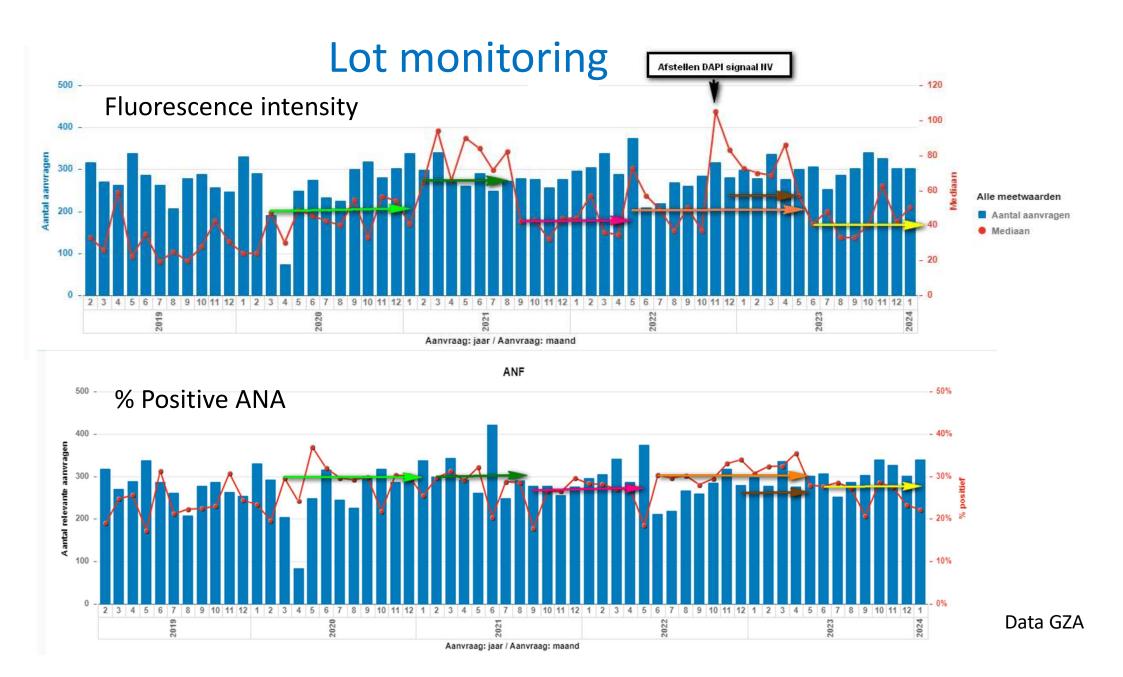
Samples with selected pattern and specificity

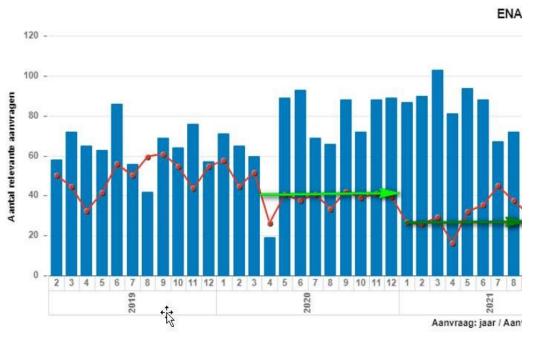

dsDNA/ ENA	Lot 1 Pattern	Lot 1 Fl	Lot 1 Autotiter/ Titration	Lot 2 Pattern	Lot 2 Fl	Lot 1 Autotiter/ Titration
Scl70	AC-1	1807	640	AC-1	1141	640
RNP/Sm	AC-4,5	2692	1280	AC-4,5	2922	>1280
cenpB	AC-3	174	320	AC-3	163	320
Scl70	AC- 8,9,10	1637	1280	AC-8,9,10	1040	640
M2	AC-21			AC-21		

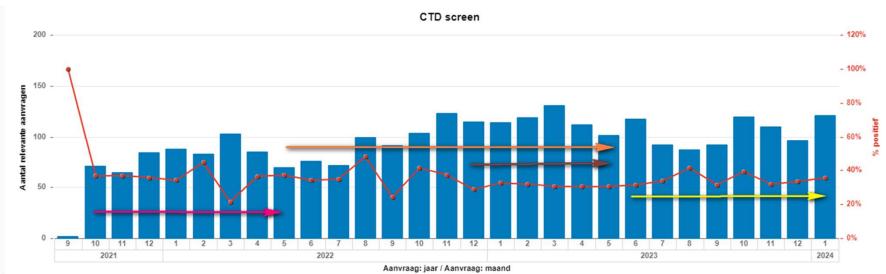

IQC positive patient SSA RO60



IQC positive patient SSA RO60


More SSA positive samples





Data GZA

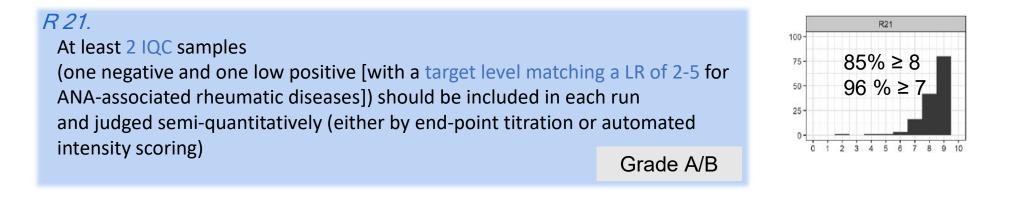
Lot monitoring

R19-R25: Quality approaches in HEp-2 IFA

International guidelines and EN/ISO 15189:2012 accreditation: challenge for ANA analysis

R 19.		150	
Performance of HEp-2 IFA should be monitored by		125 -	00
internal (IQC per run and periodic blinded reading of re	epresentative cases)	100 - 75 -	98 9
and external quality assessment programs.		50 -	99 9
. ,	Grade A	25-	

Everybody is involved in quality assurance


Торіс	Number of responses	%	
Performance of run IQC	323	96	\bigcirc
Control inter-observer variation	277	79	\odot
Participation in EQC schemes	273	91	\mathbf{Q}

Adapted from Vercammen et al. CCLM, 61(7), 1199–1208. https://doi.org/10.1515/cclm-2023-0210

R19

 $\% \ge 8$ $\% \ge 7$

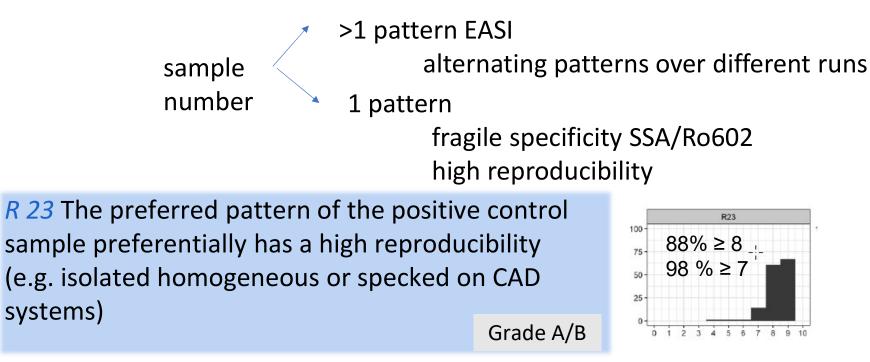
R19-R25: Quality approaches in HEp-2 IFA

Titer 1/160 HEp-2000 LIU 552-910 Novaview CAD

Op De Beeck et al. Autoimm Rev 2011;10:801-8 and Claessens J et al. Autoimm Rev 2018;17:533-40

Quality approaches in HEp-2 IFA. Survey

Variability in approach towards RUN IQC > number and level of the IQC samples

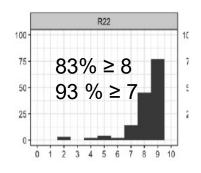

	Level of positive IQC samples (n=288)	%
	High level	52
)	Medium level	19
)	Cut-off level	13
	Different level	16

Number IQC sample/run (n=300)	%	-
1 Positive and 1 negative IQC	62	6
> 1 Positive and 1 negative IQC	13	6
1 Positive and no negative IQC	21	
> 1 Positive and no negative IQC	1,7	

Bonroy et al CCLM, 61(7), 1167–1198. https://doi.org/10.1515/cclm-2023-0209 and Adapted from Vercammen et al. CCLM, 61(7), 1199–1208. https://doi.org/10.1515/cclm-2023-0209 and Adapted from Vercammen et al. CCLM, 61(7), 1199–1208.

R19-R25: Quality approaches in HEp-2 IFA

Pattern defined antibody positivity


Bonroy et al CCLM, 61(7), 1167–1198. https://doi.org/10.1515/

R19-R25: Quality approaches in HEp-2 IFA

Grade A/B

R 22.

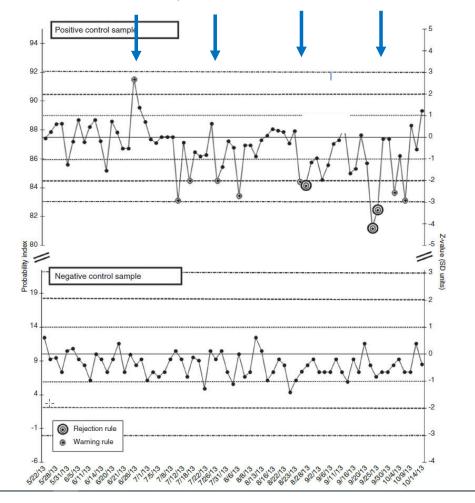
In addition to kit controls, it is advised to run IQC samples from patient origin, either pooled or unique samples as they are processed as routine samples (thus allowing monitoring of the whole assay procedure)

Acceptance criteria

+/- 1 (2) titers Mean +/- 2 SD Probability index/FI (CAD)

Bonroy et al CCLM, 61(7), 1167-1198. https://doi.org/10.1515/

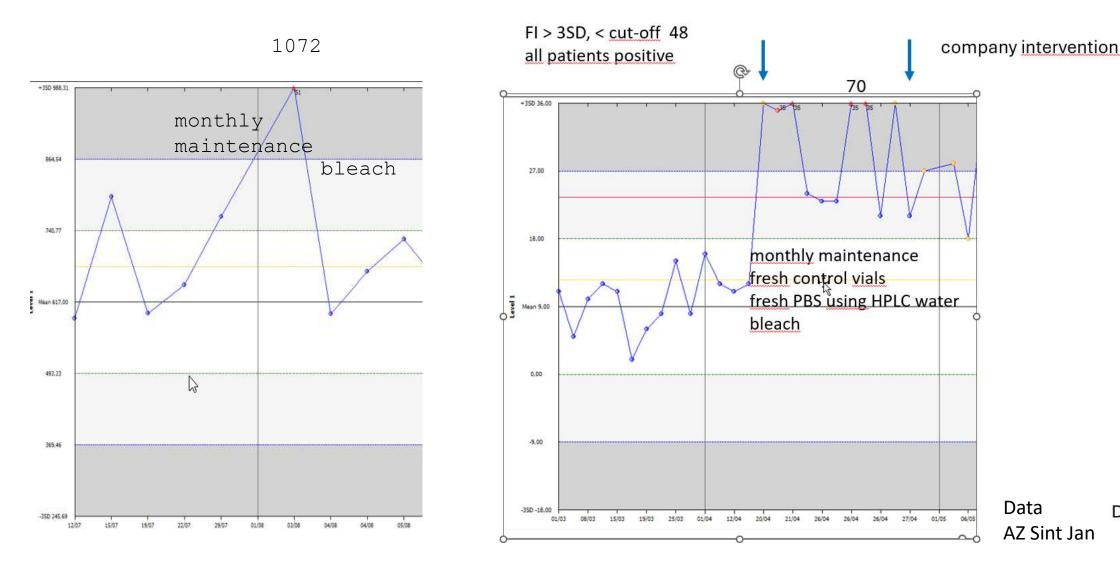
Quality approaches in HEp-2 IFA. Survey


Variability in approach towards run IQC > origin and dilution of the IQC samples

Origin of the IQC samples (n=296)	%	
Commercial origin only	58	
Patient origin only	13	\bigcirc
Commercial and patient origin	29	
Dilution of the IQC samples (n=296)	%	
Undiluted (different from patient samples)	63	
Diluted (same dilution as patient samples)	30	\bigcirc
Diluted (different dilution as patient samples)	7	
Pooled or single patient IQC samples (n=128)	%	
Pooled patient sample	11	
Single patient samples	64	
Pooled and single patient samples	24	

Adapted from Vercammen et al. CCLM, 61(7), 1199–1208. https://doi.org/10.1515/cclm-2023-0210

IQC patient control CAD


artefact picture conjugate pipetting



Adapted from Maenhaut CCLM 2014;52(7):989-998

IQC patient control CAD

Artifically induced errors detectable by IQC and Quality indicators

DE GRUYTER

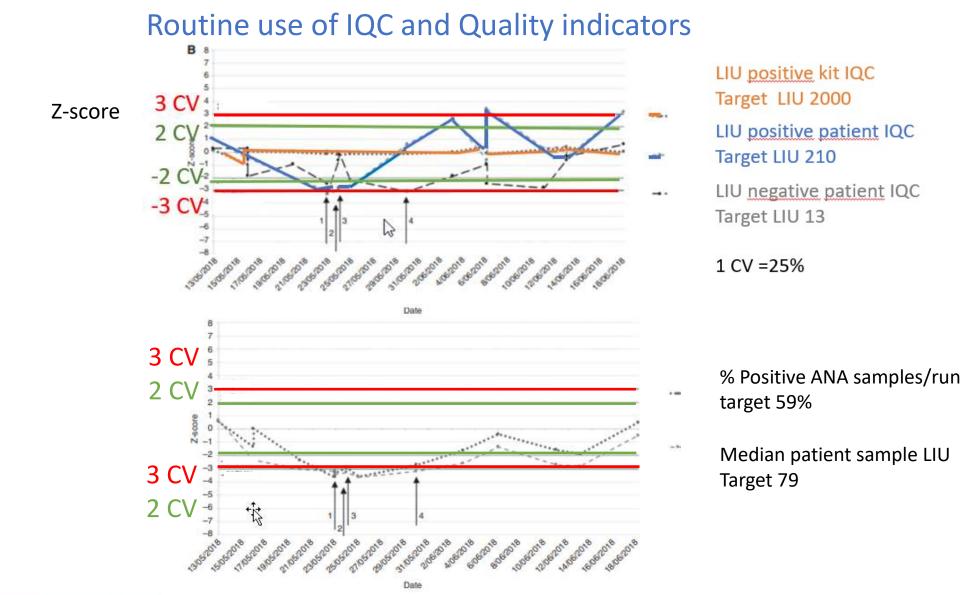
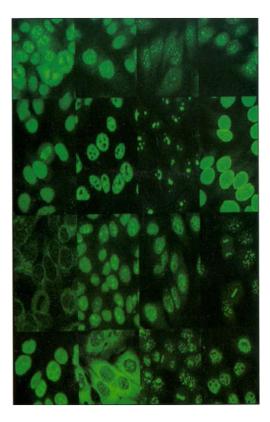

Bogaert et al.: Internal quality control program of automated ANA IIF analysis - 993

Table 3: Impact of each error on the different quality indicators.

2 Sca	n 3	Scan 4	Scan 5	incubation >3 h	3 months	contamination
% -13	201	COL02314-11				
	3%	-19.7%	-26.2%	-9.4%	-1.8%	-0.8%
% 0	.0%	0.0%	0.0%	0.0%	0.0%	0.0%
% -45	4%	- 50.2%	- 69.4%	-40.5%	-49.2%	194.7%
% -49	6%	-39.5%	-63.2%	-25.6%	- 56.6%	134.9%
% -11	1%	-33.3%	-47.2%	-11.1%	-44.4%	1276.0%
% -4	.0%	-10.0%	-10.0%	0.0%	-10.0%	50.0%
% -41	.5%	- 54.9%	-65.9%	-24.7%	- 60.1%	166.6%
	% -45 % -49 % -11 % -4	% -45.4% % -49.6% % -11.1% % -4.0%	% -45.4% - 50.2% % -49.6% - 39.5% % -11.1% - 33.3% % -4.0% -10.0%	% -45.4% -50.2% -69.4% % -49.6% -39.5% -63.2% % -11.1% -33.3% -47.2% % -4.0% -10.0% -10.0%	% -45.4% -50.2% -69.4% -40.5% % -49.6% -39.5% -63.2% -25.6% % -11.1% -33.3% -47.2% -11.1% % -4.0% -10.0% -10.0% 0.0%	% -45.4% -50.2% -69.4% -40.5% -49.2% % -49.6% -39.5% -63.2% -25.6% -56.6% % -11.1% -33.3% -47.2% -11.1% -44.4% % -4.0% -10.0% -10.0% 0.0% -10.0%

	Needle obstruction	Contrad dilution	PBS buffer dilution	Sample wash step	Conjugate wash step	Old buffer
LIU* positive kit iQC ^b	1.4%	6.2%	-2.4%	-10.5%	-2.5%	-4.2%
LIU ² negative kit iQC ²	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
LIU [®] positive sample iQC [®] speckled	-85.7%	-30.4%	105.9%	-43.8%	43.1%	-8.1%
LIU ^a positive sample IQC ^a homogeneous	- 92.2%	-33.1%	123.6%	-39.2%	64.6%	-12.8%
LIU ^a negative sample iQC ^b	- 100.0%	-25.0%	1430.6%	-22.2%	1.9%	1.9%
% positive ANA IIF Patient samples/run	- 62.5%	0.0%	60.0%	10.0%	25.0%	0.0%
Median patient sample LIU*/run	-86.0%	-33.2%	303.4%	-37.5%	89.1%	-9.1%

Results are expressed as relative deviation in LIU from the target values (iQC) or reference run (median LIU/run and % positive/run), with LIU changes exceeding the warning limits highlighted in italic and changes exceeding the stop limits in italic and bold. «LIU, light intensity units; "iQC, internal quality control; "ANA IIF, anti-nuclear antibodies indirect immunofluorescence test.



Adapted from Bogaert et al. CCLM 2019;57(7):990-998

Data OLV Aalst

Take home messages

Verification Lot evaluation	different cell compartments different antigens titer/FI
Tools for IQC and quality p	performance
Titer/FI patient IQC	% positive patients median FI % positive CTD/ENA

Thanks to all laboratory technicians and colleagues !!!!!